3,524 research outputs found

    Electromagnetic Corrections in Partially Quenched Chiral Perturbation Theory

    Get PDF
    We introduce photons in Partially Quenched Chiral Perturbation Theory and calculate the resulting electromagnetic loop-corrections at NLO for the charged meson masses and decay constants. We also present a numerical analysis to indicate the size of the different corrections. We show that several phenomenologically relevant quantities can be calculated consistently with photons which couple only to the valence quarks, allowing the use of gluon configurations produced without dynamical photons.Comment: 11 page

    First orbital solution for the non-thermal emitter Cyg OB2 #9

    Full text link
    After the first detection of its binary nature, the spectroscopic monitoring of the non-thermal radio emitter Cyg OB2 #9 (P=2.4yrs) has continued, doubling the number of available spectra of the star. Since the discovery paper of 2008, a second periastron passage has occurred in February 2009. Using a variety of techniques, the radial velocities could be estimated and a first, preliminary orbital solution was derived from the HeI5876 line. The mass ratio appears close to unity and the eccentricity is large, 0.7--0.75. X-ray data from 2004 and 2007 are also analyzed in quest of peculiarities linked to binarity. The observations reveal no large overluminosity nor strong hardness, but it must be noted that the high-energy data were taken after the periastron passage, at a time where colliding wind emission may be low. Some unusual X-ray variability is however detected, with a 10% flux decrease between 2004 and 2007. To clarify their origin and find a more obvious signature of the wind-wind collision, additional data, taken at periastron and close to it, are needed.Comment: 15 pages, 4 figures, accepted by Ap

    The Kaon B-parameter from Quenched Domain-Wall QCD

    Full text link
    We present numerical results for the kaon B-parameter, B_K, determined in the quenched approximation of lattice QCD. Our simulations are performed using domain-wall fermions and the renormalization group improved, DBW2 gauge action which combine to give quarks with good chiral symmetry at finite lattice spacing. Operators are renormalized non-perturbatively using the RI/MOM scheme. We study scaling by performing the simulation on two different lattices with a^{-1} = 1.982(30) and 2.914(54) GeV. We combine this quenched scaling study with an earlier calculation of B_K using two flavors of dynamical, domain-wall quarks at a single lattice spacing to obtain B_K(MS,NDR,mu=2GeV)=0.563(21)(39)(30), were the first error is statistical, the second systematic (without quenching errors) and the third estimates the error due to quenching.Comment: 77 pages, 44 figures, to be published in Phys. Rev.

    Component Separation for Spectral X-Ray Imaging Using the XPAD3 Hybrid Pixel Camera

    No full text
    The advent of hybrid pixel cameras in X-ray imaging opens the way to the acquisition of spectral measurements. These new devices for which photon counting replaces charge integration incorporate a dedicated readout electronic for each pixel including a capability of selecting energies via the setup of an energy threshold. This ability is of uppermost importance for the development of new polychromatic X-ray imaging approaches that will exploit spectral information on the detected X-rays. Spectral measurements in X-ray imaging pave the way to the separation of images in several components of physical and biological interest: the photoelectric and the Compton contributions can be separated while several contrast agents can be simultaneously localized. We investigate the capability to perform component separation by using the newly developed XPAD3 hybrid pixel camera incorporated in the micro-CT demonstrator PIXSCAN. Firstly, we propose an approach to configure the acquisition setup in order to optimize the component separation problem with respect to the robustness to the photon noise. The method is based on the Cramer-Rao Bound (CRB) that indicates the lowest reachable variance for the estimation of each component whatever the algorithm. Secondly, we investigate the separation problem with two components namely the photoelectric and the Compton ones. We show on noisy simulated data that such a separation with optimized setup i) enhances the contrast and the Contrast to Noise Ratio (CNR) between biological materials (adipose, soft tissues) and water; ii) cancels the artifacts of the beam-hardening effect that may strongly degrade the image quality. On going work involves two steps: first, dealing with Monte Carlo simulations and real data acquired with the PIXSCAN demonstrator; second, dealing with component separation with more than two components by adding several contrast agents, for which PIXSCAN has already proved its ability to separate them

    Results from percutaneous drainage of Hinchey stage II diverticulitis guided by computed tomography scan

    Get PDF
    Background: Percutaneous abscess drainage guided by computed tomography scan is considered the initial step in the management of patients presenting with Hinchey II diverticulitis. The rationale behind this approach is to manage the septic complication conservatively and to follow this later using elective sigmoidectomy with primary anastomosis. Methods: The clinical outcomes for Hinchey II patients who underwent percutaneous abscess drainage in our institution were reviewed. Drainage was considered a failure when signs of continuing sepsis developed, abscess or fistula recurred within 4 weeks of drainage, and emergency surgical resection with or without a colostomy had to be performed. Results: A total of 34 patients (17 men and 17 women; median age, 71 years; range, 34-90 years) were considered for analysis. The median abscess size was 6 cm (range, 3-18 cm), and the median duration of drainage was 8 days (range, 1-18 days). Drainage was considered successful for 23 patients (67%). The causes of failure for the remaining 11 patients included continuing sepsis (n = 5), abscess recurrence (n = 5), and fistula formation (n = 1). Ten patients who failed percutaneous abscess drainage underwent an emergency Hartmann procedure, with a median delay of 14 days (range, 1-65 days) between drainage and surgery. Three patients in this group (33%) died in the immediate postoperative period. Among the 23 patients successfully drained, 12 underwent elective sigmoid resection with a primary anastomosis. The median delay between drainage and surgery was 101 days (range, 40-420 days). In this group, there were no anastomotic leaks and no mortality. Conclusion: Drainage of Hinchey II diverticulitis guided by computed scan was successful in two-thirds of the cases, and 35% of the patients eventually underwent a safe elective sigmoid resection with primary anastomosis. By contrast, failure of percutaneous abscess drainage to control sepsis is associated with a high mortality rate when an emergency resection is performed. The current results demonstrate that percutaneous abscess drainage is an effective initial therapeutic approach for patients with Hinchey II diverticulitis, and that emergency surgery should be avoided whenever possibl

    A Preliminary Seismic Analysis of 51 Peg: Large and Small Spacings from Standard Models

    Full text link
    We present a preliminary theoretical seismic study of the astronomically famous star 51 Peg. This is done by first performing a detailed analysis within the Hertzsprung-Russell diagram (HRD). Using the Yale stellar evolution code (YREC), a grid of stellar evolutionary tracks has been constructed for the masses 1.00 M_sun, 1.05 M_sun and 1.10 M_sun, in the metallicity range Z=0.024-0.044, and for values of the Galactic helium enrichment ratio DY/DZ in the range 0-2.5. Along these evolutionary tracks, we select 75 stellar model candidates that fall within the 51 Peg observational error box in the HRD (all turn out to have masses of 1.05 M_sun and 1.10 M_sun. The corresponding allowable age range for these models, which depends sensitively on the parameters of the model, is relatively large and is ~2.5 - 5.5 Gyr. For each of the 75 models, a non-radial pulsation analysis is carried out, and the large and small frequency spacings are calculated. The results show that just measuring the large and small frequency spacings will greatly reduce the present uncertainties in the derived physical parameters and in the age of 51 Peg. Finally we discuss briefly refinements in the physics of the models and in the method of analysis which will have to be included in future models to make the best of the precise frequency determinations expected from space observations.Comment: 22 pages, 5 figures, 3 tables. Accepted for publicaton by Ap

    Modelling a high-mass red giant observed by CoRoT

    Get PDF
    The G6 giant HR\,2582 (HD\,50890) was observed by CoRoT for approximately 55 days. Mode frequencies are extracted from the observed Fourier spectrum of the light curve. Numerical stellar models are then computed to determine the characteristics of the star (mass, age, etc...) from the comparison with observational constraints. We provide evidence for the presence of solar-like oscillations at low frequency, between 10 and 20\,μ\muHz, with a regular spacing of (1.7±0.1)μ(1.7\pm0.1)\muHz between consecutive radial orders. Only radial modes are clearly visible. From the models compatible with the observational constraints used here, We find that HR\,2582 (HD\,50890) is a massive star with a mass in the range (3--\,5\,M⊙M_{\odot}), clearly above the red clump. It oscillates with rather low radial order (nn = 5\,--\,12) modes. Its evolutionary stage cannot be determined with precision: the star could be on the ascending red giant branch (hydrogen shell burning) with an age of approximately 155 Myr or in a later phase (helium burning). In order to obtain a reasonable helium amount, the metallicity of the star must be quite subsolar. Our best models are obtained with a mixing length significantly smaller than that obtained for the Sun with the same physical description (except overshoot). The amount of core overshoot during the main-sequence phase is found to be mild, of the order of 0.1\,HpH_{\rm p}.Comment: Accepted in A&

    Seismic diagnostics for transport of angular momentum in stars 1. Rotational splittings from the PMS to the RGB

    Full text link
    Rotational splittings are currently measured for several main sequence stars and a large number of red giants with the space mission Kepler. This will provide stringent constraints on rotation profiles. Our aim is to obtain seismic constraints on the internal transport and surface loss of angular momentum of oscillating solar-like stars. To this end, we study the evolution of rotational splittings from the pre-main sequence to the red-giant branch for stochastically excited oscillation modes. We modified the evolutionary code CESAM2K to take rotationally induced transport in radiative zones into account. Linear rotational splittings were computed for a sequence of 1.3M⊙1.3 M_{\odot} models. Rotation profiles were derived from our evolutionary models and eigenfunctions from linear adiabatic oscillation calculations. We find that transport by meridional circulation and shear turbulence yields far too high a core rotation rate for red-giant models compared with recent seismic observations. We discuss several uncertainties in the physical description of stars that could have an impact on the rotation profiles. For instance, we find that the Goldreich-Schubert-Fricke instability does not extract enough angular momentum from the core to account for the discrepancy. In contrast, an increase of the horizontal turbulent viscosity by 2 orders of magnitude is able to significantly decrease the central rotation rate on the red-giant branch. Our results indicate that it is possible that the prescription for the horizontal turbulent viscosity largely underestimates its actual value or else a mechanism not included in current stellar models of low mass stars is needed to slow down the rotation in the radiative core of red-giant stars.Comment: 15 pages, 13 figures, accepted for publication in A&

    Impact of the new solar abundances on the calibration of the PMS binary system RS Cha

    Full text link
    Context: In a recent work, we tried to obtain a calibration of the two components of the pre-main sequence binary system RS Cha by means of theoretical stellar models. We found that the only way to reproduce the observational parameters of RS Cha with standard stellar models is to decrease the initial abundances of carbon and nitrogen derived from the GN93 solar mixture of heavy elements by a few tenths of dex. Aims: In this work, we aim to reproduce the observational properties of the RS Cha stars with stellar evolution models based on the new AGS05 solar mixture recently derived from a three-dimensional solar model atmosphere. The AGS05 mixture is depleted in carbon, nitrogen and oxygen with respect to the GN93 mixture. Methods: We calculated new stellar models of the RS Cha components using the AGS05 mixture and appropriate opacity tables. We sought models that simultaneously satisfy the observations of the two components (masses, radii, luminosities, effective temperatures and metallicity). Results: We find that it is possible to reproduce the observational data of the RS Cha stars with AGS05 models based on standard input physics. From these models, the initial helium content of the system is Y~0.255 and its age is ~9.13 +- 0.12 Myr.Comment: Research note accepted in A&A, 5 pages, 2 figure
    • …
    corecore