25 research outputs found

    Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement

    Get PDF
    A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connect the tyrosine biosynthetic and p-coumarate degradation pathways. In agreement with the efficient p-hydroxybenzoate production, the tyrosine biosynthetic and p-coumarate catabolic pathways were upregulated. Also many transporters were differentially expressed, one of which—a previously uncharacterized multidrug efflux transporter with locus tags PP1271-PP1273—was found to be associated with p-hydroxybenzoate export. In addition to tyrosine biosynthesis, also tyrosine degradative pathways were upregulated. Eliminating the most prominent of these resulted in a 22% p-hydroxybenzoate yield improvement. Remarkably, the upregulation of genes contributing to p-hydroxybenzoate formation was much higher in glucose than in glycerol-cultured cells

    Bond slip behaviour of deep mounted carbon fibre reinforced polymer strops confined with a ductile adhesive in clay brick masonry

    No full text
    Retrofitting clay brick masonry using Deep Mounted (DM) Carbon Fibre Reinforced Polymer (CFRP) strips embedded in grooves filled with a ductile adhesive considerably increases the out-of-plane flexural capacity of slender unreinforced masonry walls. In order to investigate the bond-slip behaviour of CFRP-strips in a viscous-elastic adhesive, an extensive experimental program was initiated. Direct pull-out tests were conducted with clay brick masonry. Two parameters were investigated, namely, the type of adhesive (2 types) and the groove widths (10 and 15 mm). The second part of the experimental program focused on the pull-out capacity when surface treatment (primering or sandblasting) was applied to the CFRP-strips. In literature dealing with bond behaviour the critical bond length was found using masonry prisms of approximately 350 mm in height. In the current study with CFRP strip application in conjunction with ductile epoxy, the critical bond length was not reached for specimens of nearly 1000 mm in length. This finding was an indication of a significantly improved stress distribution over the length of the embedded CFRP-strip as the appearance of peak stresses was prevented. No premature brick splitting was initiated despite the depth of the groove being 65% of the specimen thickness, whereas in literature this phenomenon was reported for groove depths of only 30%

    A novel peptidomics approach to detect markers of Alzheimer's disease in cerebrospinal fluid

    No full text
    Sensitive and specific diagnosis and monitoring of disease progression are of prime importance to develop new therapies for Alzheimer's disease patients. Although the diagnostic accuracy, verified by pathological examination is high, it is currently not possible to diagnose Alzheimer's disease with a high degree of certainty until relatively late in the disease process. Here, we have undertaken a peptidome analysis of postmortem cerebrospinal fluid of neuropathologically confirmed Alzheimer's disease patients and non-demented controls using a combination of methods and technologies. This includes novel sample preparation based on the enrichment of endogenous, proteolytically derived peptides as well as peptides non-covalently bound to abundant proteins. We observed differences in peptide profiles associated with Alzheimer's disease in the endogenous peptide fraction and in the protein-bound peptide fraction. The discriminating peptides in the unbound peptide fraction were identified as VGF nerve growth factor inducible precursor, and complement C4 precursor, whereas the discriminating peptides in the protein-bound fraction were identified as VGF nerve growth factor inducible precursor, and alpha-2-HS-glycoprotei

    Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield

    No full text
    Pseudomonas putida KT2440-JD1 was derived from P. putida KT2440 after N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-mutagenesis and exposure to 3-fluorobenzoate (3-FB). The mutant was no longer able to grow using benzoate as a sole carbon source, but co-metabolized benzoate to cis, cis-muconate during growth on glucose, which accumulated in the growth medium. The specific production rate (qpm) was 0.18 ± 0.03 g cis, cis-muconate/(gDCW h) in continuous cultures, and increased to 1.4 g cis, cis-muconate/(gDCW h) during wash-out cultivation. Transcriptome analysis showed that the cat operon was not induced in P. putida KT2440-JD1 in the presence of 5 mM benzoate, due to a point mutation in the highly conserved DNA binding domain of the transcriptional regulator (catR) of the cat operon. The ben operon was highly expressed in the presence of benzoate in the mutant and its parental strain. This operon contains PP_3166 (catA2), which was shown to be a second catechol 1,2-dioxygenase besides catA. P. putida KT2440-JD1 is the first cis, cis-muconate-accumulating mutant that was characterized at the genetic level. The specific production rate achieved is at least eight times higher than those reported for other cis, cis-muconate-producing strain

    Geocon bridge geopolymer concrete mixture for structural applications

    Get PDF
    The sustainability of infrastructure projects is becoming increasingly important issue in engineering practice. This means that in the future the construction materials will be selected on the basis of the contribution they can make to reach sustainability requirements. Geopolymers are materials based on by-products from industries. By using geopolymer concrete technology it is possible to reduce our waste and to produce concrete in the environmental-friendly way. An 80% or greater reduction of greenhouse gases compared with Ordinary Portland Cement (OPC) can be achieved through geopolymer technology. However, there are limited practical applications and experience. For a broad and large scale industrial application of geopolymer concrete, challenges still exist in the technological and engineering aspects. The main goal of GeoCon Bridge project was to develop a geopolymer concrete mixture and to upscale it to structural application. The outputs of projects provide input for development of recommendations for structural design of geopolymer based reinforced concrete elements. Through a combination of laboratory experiments on material and structural elements, structural design and finite element simulations, and based on previous experience with OPC concrete, knowledge generated in this project provides an important step towards a “cement free” construction. The project was performed jointly by three team members: Microlab and Group of Concrete Structures from Technical University of Delft and Technical University of Eindhoven.Materials and EnvironmentConcrete StructuresMicrolabSteel & Composite Structure
    corecore