15 research outputs found

    Tetrathiotetracene thin film morphology and electrical properties

    Get PDF
    The electrical properties of organic thin films are determined by their chemical constituents and the morphology of the films deposited. In this paper the morphology of vacuum sublimed (7∙10-6 mbar) tetrathiotetracene (TTT) thin films is shown to be strongly affected by the thermal deposition temperature (222-350 K) and rate of deposition. Mostly needle-like morphologies are identified by scanning electron microscopy. Optimal TTT purity (a pre-requisite for device preparation via subsequent oxidation) is evidenced by their initially low electrical conductivity. Altering the TTT morphology, by variation of the evaporation parameters, strongly affects this base electrical conductivity. Four probe conductivity measurements and charge extraction by linear increasing voltage methods are used to characterize film electrical properties. In-plane conductivity of up to 7.03∙10-5 S/cm is achieved for pure TTT thin films. Subsequent aerial oxidation resulted in a 3.4-fold increase in electrical conductivity

    Thin film organic thermoelectric generator based on tetrathiotetracene

    No full text
    Thin films of p- and n- type organic semiconductors for thermo-electrical (TE) applications are produced by doping of tetrathiotetracene (TTT). To obtain p-type material TTT is doped with iodine during vacuum deposition of thin films or by post-deposition doping using controlled exposure to iodine vapors. Thermal co-deposition in vacuum of TTT and TCNQ is used to prepare n-type thin films. The attained thin films are characterized by measurements of Seebeck coefficient and electrical conductivity. Seebeck coefficient and conductivity could be varied by altering the doping level. P-type TTT:iodide thin films with a power factor of 0.52 μWm-1K-2, electrical conductivity of 130 S m-1 and Seebeck coefficient of 63 μV K-1 and n-type TCNQ:TTT films with power factor of 0.33 μWm-1K-2, electrical conductivity of 57 S m-1 and Seebeck coefficient of -75 μV K-1 are produced. Engineered deposition of both p- and n-type thermoelectric conducting elements on the same substrate is demonstrated. A proof of concept prototype of planar thin film TE generator based on a single p-n couple from the organic materials is built and its power generation characterized

    2-(4,5,6,7,8,9-Hexahydro-6a-Azaphenylen-2-Ethylene)Indan-1,3-Dione: Disorder in the Crystal Structure

    No full text
    The title compound, C22H19NO2, has potential for use as a new nonlinear optical material. Molecules are almost planar. One C atom of the heterocyclic ring system is disordered over two positions; the site occupancy factors are 0.6 and 0.4.

    Novel Amorphous Red Electroluminescence Material Based on Pyranylidene Indene-1,3-dione Derivative

    No full text
    The organic light emitting diode (OLED) is a promising device for future technologies, like flat panel displays and novel light sources. So far the OLED struc-tures have mostly been made by thermal evaporation in vacuum. An alternative approach is to use small molecules which form solid state with glassy structure from solutions. Such compounds can be used in the ink-jet printing technologies and result in reducing the OLED prices. In this paper, we present an original red fluorescent organic compound 2-(2-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-6-methyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione (ZWK1), with the maximum of the photoluminescence spectrum for solid state at 657 nm. The structure of the electroluminescent device was ITO/PEDOT: PSS (40 nm)/ZWK1 (120 nm)/LiF (1 nm)/Al (100 nm). The electroluminescence spectra correspond to the CIE coordinates x = 0.65 and y = 0.34 with the maximum at 667 nm. The power and luminance efficiency at the luminance of 100 cd/m2 is 0.43 lm/W and 1.97 cd/A, respectively

    Novel Amorphous Red Electroluminescence Material Based on Pyranylidene Indene-1,3-dione Derivative

    No full text
    Research devoted towards studies of the new organic molecules with light-emitting propertie

    Energy Structure and Electro-Optical Properties of Organic Layers with Carbazole Derivative

    No full text
    Phosphorescent organic light emitting diodes are perspective in lighting technologies due to high efficient electroluminescence. Not only phosphorescent dyes but also host materials are important aspect to be considered in the devices where they are a problem for blue light emitting phosphorescent molecules. Carbazole derivative 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole (TCz1) is a good candidate and has shown excellent results in thermally evaporated films. This paper presents the studies of electrical properties and energy structure in thin films of spin-coated TCz1 and thermally evaporated tris[2-(2,4-difluorophenyl)pyridine]iridium(III) (Ir(Fppy)3). The 0.46 eV difference of electron conduction level between TCz1 and Ir(Fppy)3 compounds was obtained from the cyclic voltammetry and photoconductivity measurements. Temperature modulated space charge limited current (TM-SCLC) method is used to measure the local trapping states for charge carrier in the energy gap. The TM-SCLC measurements for the system TCz1 + 8 wt.% Ir(Fppy)3 show a trapping state with the value of 0.4 eV which is comparable to the conduction level difference of these materials. It allows to conclude that Ir(Fppy)3 molecules act as electron traps in the TCz1 matrix and the TM-SCLC method is applicable to investigate dopants as trapping states. To show the trap effect, an organic light emitting diode was made where the electroluminescent layer was a spin-coated host-guest system of TCz1 with incorporated 8 wt.% Ir(Fppy)3

    Thiazoline Carbene-Cu(I)-Amide complexes : Efficient White Electroluminescence from Combined Monomer and Excimer Emission

    No full text
    Luminescent carbene-metal-amide complexes bearing group 11 metals (Cu, Ag, Au) have recently attracted great attention due to their exceptional emission efficiency and high radiative decay rates (k(r)). These materials provide a less costly alternative to organic light-emitting diode (OLED) emitters based on more scarce metals, such as Ir and Pt. Herein, a series of eight Cu(I) complexes bearing as yet unexplored 1,3-thiazoline carbenes have been investigated and analyzed with respect to their light emission properties and OLED application. For the first time among the class of copper-based organometallic compounds the formation of efficient electroluminescent excimers is demonstrated. The prevalence of electroluminescence (EL) from either the monomer (bluish green) or the excimer (orange-red) can be adjusted in vacuum-deposited emissive layers by altering the extent of steric encumbrance of the emitter or its concentration. Optimized conditions in terms of the emitter structure and mass fraction allowed a simultaneous EL from the monomer and excimer, which laid the basis for a preparation of a single-emitter white OLED (WOLED) with external quantum efficiency of 16.5% and a maximum luminance of over 40000 cd m(-2). Wide overlapping emission bands of the monomer and excimer ensure a device color rendering index (CRI) of above 80. In such a way the prospects of copper complexes as cost-effective materials for lighting devices are demonstrated, offering expense reduction through a cheaper emissive component and a simplified device architecture
    corecore