694 research outputs found

    Evolution of the solar irradiance during the Holocene

    Full text link
    Aims. We present a physically consistent reconstruction of the total solar irradiance for the Holocene. Methods. We extend the SATIRE models to estimate the evolution of the total (and partly spectral) solar irradiance over the Holocene. The basic assumption is that the variations of the solar irradiance are due to the evolution of the dark and bright magnetic features on the solar surface. The evolution of the decadally averaged magnetic flux is computed from decadal values of cosmogenic isotope concentrations recorded in natural archives employing a series of physics-based models connecting the processes from the modulation of the cosmic ray flux in the heliosphere to their record in natural archives. We then compute the total solar irradiance (TSI) as a linear combination of the jth and jth + 1 decadal values of the open magnetic flux. Results. Reconstructions of the TSI over the Holocene, each valid for a di_erent paleomagnetic time series, are presented. Our analysis suggests that major sources of uncertainty in the TSI in this model are the heritage of the uncertainty of the TSI since 1610 reconstructed from sunspot data and the uncertainty of the evolution of the Earth's magnetic dipole moment. The analysis of the distribution functions of the reconstructed irradiance for the last 3000 years indicates that the estimates based on the virtual axial dipole moment are significantly lower at earlier times than the reconstructions based on the virtual dipole moment. Conclusions. We present the first physics-based reconstruction of the total solar irradiance over the Holocene, which will be of interest for studies of climate change over the last 11500 years. The reconstruction indicates that the decadally averaged total solar irradiance ranges over approximately 1.5 W/m2 from grand maxima to grand minima

    A new model of cosmogenic production of radiocarbon 14C in the atmosphere

    Full text link
    We present the results of full new calculation of radiocarbon 14C production in the Earth atmosphere, using a numerical Monte-Carlo model. We provide, for the first time, a tabulated 14C yield function for the energy of primary cosmic ray particles ranging from 0.1 to 1000 GeV/nucleon. We have calculated the global production rate of 14C, which is 1.64 and 1.88 atoms/cm2/s for the modern time and for the pre-industrial epoch, respectively. This is close to the values obtained from the carbon cycle reservoir inventory. We argue that earlier models overestimated the global 14C production rate because of outdated spectra of cosmic ray heavier nuclei. The mean contribution of solar energetic particles to the global 14C is calculated as about 0.25% for the modern epoch. Our model provides a new tool to calculate the 14C production in the Earth's atmosphere, which can be applied, e.g., to reconstructions of solar activity in the past.Comment: Published in EPSL, 337, 114, 201

    Solar total and spectral irradiance reconstruction over the last 9000 years

    Full text link
    Changes in solar irradiance and in its spectral distribution are among the main natural drivers of the climate on Earth. However, irradiance measurements are only available for less than four decades, while assessment of solar influence on Earth requires much longer records. The aim of this work is to provide the most up-to-date physics-based reconstruction of the solar total and spectral irradiance (TSI/SSI) over the last nine millennia. The concentrations of the cosmogenic isotopes 14C and 10Be in natural archives have been converted to decadally averaged sunspot numbers through a chain of physics-based models. TSI and SSI are reconstructed with an updated SATIRE model. Reconstructions are carried out for each isotope record separately, as well as for their composite. We present the first ever SSI reconstruction over the last 9000 years from the individual 14C and 10Be records as well as from their newest composite. The reconstruction employs physics-based models to describe the involved processes at each step of the procedure. Irradiance reconstructions based on two different cosmogenic isotope records, those of 14C and 10Be, agree well with each other in their long-term trends despite their different geochemical paths in the atmosphere of Earth. Over the last 9000 years, the reconstructed secular variability in TSI is of the order of 0.11%, or 1.5 W/m2. After the Maunder minimum, the reconstruction from the cosmogenic isotopes is consistent with that from the direct sunspot number observation. Furthermore, over the nineteenth century, the agreement of irradiance reconstructions using isotope records with the reconstruction from the sunspot number by Chatzistergos et al. (2017) is better than that with the reconstruction from the WDC-SILSO series (Clette et al. 2014), with a lower chi-square-value

    Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxim

    Full text link
    Cosmogenic isotopes provide the only quantitative proxy for analyzing the long-term solar variability over a centennial timescale. While essential progress has been achieved in both measurements and modeling of the cosmogenic proxy, uncertainties still remain in the determination of the geomagnetic dipole moment evolution. Here we improve the reconstruction of solar activity over the past nine millennia using a multi-proxy approach. We used records of the 14C and 10Be cosmogenic isotopes, current numerical models of the isotope production and transport in Earth's atmosphere, and available geomagnetic field reconstructions, including a new reconstruction relying on an updated archeo-/paleointensity database. The obtained series were analyzed using the singular spectrum analysis (SSA) method to study the millennial-scale trends. A new reconstruction of the geomagnetic dipole field moment, GMAG.9k, is built for the last nine millennia. New reconstructions of solar activity covering the last nine millennia, quantified in sunspot numbers, are presented and analyzed. A conservative list of grand minima and maxima is provided. The primary components of the reconstructed solar activity, as determined using the SSA method, are different for the series based on 14C and 10Be. These primary components can only be ascribed to long-term changes in the terrestrial system and not to the Sun. They have been removed from the reconstructed series. In contrast, the secondary SSA components of the reconstructed solar activity are found to be dominated by a common ~2400-yr quasi-periodicity, the so-called Hallstatt cycle, in both the 14C and 10Be based series. This Hallstatt cycle thus appears to be related to solar activity. Finally, we show that the grand minima and maxima occurred intermittently over the studied period, with clustering near highs and lows of the Hallstatt cycle, respectively.Comment: In press in Astronomy & Astrophysics, doi: 10.1051/0004-6361/20152729

    Regional cosmic ray induced ionization and geomagnetic field changes

    Get PDF
    Cosmic ray induced ionization (CRII) is an important factor of outer space influences on atmospheric properties. Variations of CRII are caused by two different processes – solar activity variations, which modulate the cosmic ray flux in interplanetary space, and changes of the geomagnetic field, which affects the cosmic ray access to Earth. Migration of the geomagnetic dipole axis may greatly alter CRII in some regions on a time scale of centuries and longer. Here we present a study of CRII regional effects of the geomagnetic field changes during the last millennium for two regions: Europe and the Far East. We show that regional effects of the migration of the geomagnetic dipole axis may overcome global changes due to solar activity variations

    Grand minima and maxima of solar activity: New observational constraints

    Full text link
    Using a reconstruction of sunspot numbers stretching over multiple millennia, we analyze the statistics of the occurrence of grand minima and maxima and set new observational constraints on long-term solar and stellar dynamo models. We present an updated reconstruction of sunspot number over multiple millennia, from 14^{14}C data by means of a physics-based model, using an updated model of the evolution of the solar open magnetic flux. A list of grand minima and maxima of solar activity is presented for the Holocene (since 9500 BC) and the statistics of both the length of individual events as well as the waiting time between them are analyzed. The occurrence of grand minima/maxima is driven not by long-term cyclic variability, but by a stochastic/chaotic process. The waiting time distribution of the occurrence of grand minima/maxima deviates from an exponential distribution, implying that these events tend to cluster together with long event-free periods between the clusters. Two different types of grand minima are observed: short (30--90 years) minima of Maunder type and long (>>110 years) minima of Sp\"orer type, implying that a deterministic behaviour of the dynamo during a grand minimum defines its length. The duration of grand maxima follows an exponential distribution, suggesting that the duration of a grand maximum is determined by a random process. These results set new observational constraints upon the long-term behaviour of the solar dynamo.Comment: 10 Figure
    • …
    corecore