923 research outputs found

    Isotopic and Microstructural Analyses of Opaque Mineral Assemblages and Their Alteration Products Hosted in a Refractory Inclusion

    Get PDF
    Calcium-aluminum-rich inclusions (CAIs) hosted in primitive meteorites are the oldest solids formed in the Solar System. Some CAIs contain metal nuggets that are complex assemblages of Fe-Ni alloys, along with rare ultra-refractory metals such as platinum group elements (PGEs), and their alteration products such as magnetite, sulfides, and phosphates. Three possible mechanisms proposed to explain the origin of these metal nuggets include condensation in circumstellar settings, condensation in the solar nebula within the CAI-forming region, or crystallization from immiscible metal-silicate melt. However, secondary alteration processes may have also affected some of these assemblages. Additionally, similar metal assemblages observed in chondrules and chondritic matrix indicate that all of these metal nuggets could share common high-temperature origins. These metal assemblages record early Solar System conditions that are reflected in their distinctive chemical composition, mineralogy and microstructures. Here we report a detailed mineralogical, microstructural and oxygen isotopic study of one such metal assemblage hosted in a CAI to understand the physical and chemical settings in which it formed

    Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    Full text link
    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the pfpf and gg orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.Comment: 13 pagers, 19 figures, accepted by Physical Review

    An Integrated Circuit for Signal Processing of the AMS RICH Photmultipliers Tubes

    Get PDF
    An analog integrated circuit has been designed, in a BiCMOS 0.8 micron technology, for the feasability study of the signal processing of the AMS RICH photomultiplier tubes. This low power, three channel gated integrator includes its own gate and no external analog delay is requiered. It processes PMT pulses over a dynamic range of more than 100. A logic output that indicates whether the analog charge has to be considered is provided. This gated integrator is used with a compact DSP based acquisition system in a 132 channels RICH prototype. The charge calibration of each channel is carried out using a LED. The pedestal measurement is performed on activation of a dedicated input. The noise contribution study of the input RC network and amplifiers is presented.Comment: IEEE symp. on Nucl. Sci. and Med. Imaging, Toront

    Terrestrial exposure of a fresh Martian meteorite causes rapid changes in hydrogen isotopes and water concentrations

    Get PDF
    Determining the hydrogen isotopic compositions and H2O contents of meteorites and their components is important for addressing key cosmochemical questions about the abundance and source(s) of water in planetary bodies. However, deconvolving the effects of terrestrial contamination from the indigenous hydrogen isotopic compositions of these extraterrestrial materials is not trivial, because chondrites and some achondrites show only small deviations from terrestrial values such that even minor contamination can mask the indigenous values. Here we assess the effects of terrestrial weathering and contamination on the hydrogen isotope ratios and H2O contents of meteoritic minerals through monitored terrestrial weathering of Tissint, a recent Martian fall. Our findings reveal the rapidity with which this weathering affects nominally anhydrous phases in extraterrestrial materials, which illustrates the necessity of sampling the interiors of even relatively fresh meteorite falls and underlines the importance of sample return missions

    Long non-coding RNAs are involved in multiple immunological pathways in response to vaccination

    Get PDF
    Understanding the mechanisms of vaccine-elicited protection contributes to the development of new vaccines. The emerging field of Systems Vaccinology provides detailed information on host responses to vaccination and has been successfully applied to study the molecular mechanisms of several vaccines. Long noncoding RNAs (lncRNAs) are crucially involved in multiple biological processes but their role in vaccine-induced immunity has not been explored. We performed an analysis of over 2,000 blood transcriptome samples from 17 vaccine cohorts to identify lncRNAs potentially involved with antibody responses to Influenza and Yellow Fever vaccines. We have created an online database where all results from this analysis can be accessed easily. We found that lncRNAs participate in distinct immunological pathways related to vaccine-elicited responses. Among them, we showed that the expression of lncRNA FAM30A was high in B-cells and correlates with the expression of Immunoglobulin genes located in its genomic vicinity. We also identified altered expression of these lncRNAs in RNA-seq data from a new cohort of children following immunization with intranasal live attenuated influenza vaccine, suggesting a common role across several diverse vaccines. Taken together, these findings provide the first evidence that lncRNAs play a significant impact on the immune responses induced by vaccination

    Electrochemical integration of graphene with light absorbing copper-based thin films

    Full text link
    We present an electrochemical route for the integration of graphene with light sensitive copper-based alloys used in optoelectronic applications. Graphene grown using chemical vapor deposition (CVD) transferred to glass is found to be a robust substrate on which photoconductive Cu_{x}S films of 1-2 um thickness can be deposited. The effect of growth parameters on the morphology and photoconductivity of Cu_{x}S films is presented. Current-voltage characterization and photoconductivity decay experiments are performed with graphene as one contact and silver epoxy as the other

    Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    Full text link
    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The products recovered from both the ALD and other processes were water-white (even those from the low temperature, low residence time (high space velocity), low conversion runs). These results indicate that highly upgraded recycle lube oils can be produced using ALD-deposited active metal catalysts. The use of H{sup 1} and C{sup 13} NMR for the characterization of the treated lube oils has been shown to be effective

    Transforming tribal communities in Telangana, India, into strategic business enterprises — a paradigm for inclusive growth

    Get PDF
    Global food systems are failing both people and the planet due to overarching interconnected challenges, including climate change, natural resource depletion, biodiversity loss, malnutrition, food insecurity, gender inequality and preventable ill-health, all of which are exacerbated by the fragmentation of food systems and policy incoherence. Here, we present innovative interventions that have addressed critical bottlenecks in the transformation of food systems, with a case study on linking entrepreneurship with agriculture and nutrition/health via a convergence model in a select tribal locale of India
    • …
    corecore