6,430 research outputs found

    X-ray and UV investigation into the magnetic connectivity of a solar flare

    Full text link
    We investigate the X-ray and UV emission detected by RHESSI and TRACE in the context of a solar flare on the 16th November 2002 with the goal of better understanding the evolution of the flare. We analysed the characteristics of the X-ray emission in the 12-25 and 25-50 keV energy range while we looked at the UV emission at 1600 {\AA}. The flare appears to have two distinct phases of emission separated by a 25-second time delay, with the first phase being energetically more important. We found good temporal and spatial agreement between the 25-50 keV X-rays and the most intense areas of the 1600 {\AA} UV emission. We also observed an extended 100-arcsecond < 25 keV source that appears coronal in nature and connects two separated UV ribbons later in the flare. Using the observational properties in X-ray and UV wavelengths, we propose two explanations for the flare evolution in relation to the spine/fan magnetic field topology and the accelerated electrons. We find that a combination of quasi separatrix layer reconnection and null-point reconnection is required to account for the observed properties of the X-ray and UV emission.Comment: 8 pages, 8 figures, published in Astronomy and Astrophysic

    Dielectric geometric phase optical elements from femtosecond direct laser writing

    Full text link
    We propose to use femtosecond direct laser writing technique to realize dielectric optical elements from photo-resist materials for the generation of structured light from purely geometrical phase transformations. This is illustrated by the fabrication and characterization of spin-to-orbital optical angular momentum couplers generating optical vortices of topological charge from 1 to 20. In addition, the technique is scalable and allows obtaining microscopic to macroscopic flat optics. These results thus demonstrate that direct 3D photopolymerization technology qualifies for the realization of spin-controlled geometric phase optical elements.Comment: 6 figure

    Long-time properties of MHD turbulence and the role of symmetries

    Full text link
    We investigate long-time properties of three-dimensional MHD turbulence in the absence of forcing and examine in particular the role played by the quadratic invariants of the system and by the symmetries of the initial configurations. We observe that, when sufficient accuracy is used, initial conditions with a high degree of symmetries, as in the absence of helicity, do not travel through parameter space over time whereas by perturbing these solutions either explicitly or implicitly using for example single precision for long times, the flows depart from their original behavior and can become either strongly helical, or have a strong alignment between the velocity and the magnetic field. When the symmetries are broken, the flows evolve towards different end states, as predicted by statistical arguments for non-dissipative systems with the addition of an energy minimization principle, as already analyzed in \cite{stribling_90} for random initial conditions using a moderate number of Fourier modes. Furthermore, the alignment properties of these flows, between velocity, vorticity, magnetic potential, induction and current, correspond to the dominance of two main regimes, one helically dominated and one in quasi-equipartition of kinetic and magnetic energy. We also contrast the scaling of the ratio of magnetic energy to kinetic energy as a function of wavenumber to the ratio of eddy turn-over time to Alfv\'en time as a function of wavenumber. We find that the former ratio is constant with an approximate equipartition for scales smaller than the largest scale of the flow whereas the ratio of time scales increases with increasing wavenumber.Comment: 14 pages, 6 figure

    High order vibration modes of glass embedded AgAu nanoparticles

    Full text link
    High resolution low frequency Raman scattering measurements from embedded AgAu nanoparticles unveil efficient scattering by harmonics of both the quadrupolar and the spherical modes. Comparing the experimental data with theoretical calculations that account for both the embedding medium and the resonant Raman process enables a very complete description of the observed multiple components in terms of harmonics of both the quadrupolar and spherical modes, with a dominating Raman response from the former ones. It is found that only selected harmonics of the quadrupolar mode contribute significantly to the Raman spectra in agreement with earlier theoretical predictions.Comment: 11 pages, 4 figure

    Navigation by Dead Reckoning and Local Cues

    Get PDF
    According to comprehensive theories of navigation, animals navigate by using two complementary strategies: (1) dead reckoning informs the subject in a continuous manner on its actual location with respect to an Earthbound or absolute coordinate system; while (2) long-term associations between particular landmarks and specific locations allow the animal to find its way within a familiar environment. If the subject structures familiar space as a system of interconnected places - the so-called ‘cognitive map' - it may know through dead reckoning where it is located on its map and relate its route-based expectations to the actually perceived scenario of local cue

    Low-energy vibrational density of states of plasticized poly(methyl methacrylate)

    Full text link
    The low-energy vibrational density of states (VDOS)of hydrogenated or deuterated poly(methyl methacrylate)(PMMA)plasticized by dibutyl phtalate (DBP) is determined by inelastic neutron scattering.From experiment, it is equal to the sum of the ones of the PMMA and DBP components.However, a partition of the total low-energy VDOS among PMMA and DBP was observed.Contrary to Raman scattering, neutron scattering does not show enhancement of the boson peak due to plasticization.Comment: 9 pages, 2 figures (Workshop on Disordered Systems, Andalo

    Effect of physical aging on the low-frequency vibrational density of states of a glassy polymer

    Full text link
    The effects of the physical aging on the vibrational density of states (VDOS) of a polymeric glass is studied. The VDOS of a poly(methyl methacrylate) glass at low-energy (<15 meV), was determined from inelastic neutron scattering at low-temperature for two different physical thermodynamical states. One sample was annealed during a long time at temperature lower than Tg, and another was quenched from a temperature higher than Tg. It was found that the VDOS around the boson peak, relatively to the one at higher energy, decreases with the annealing at lower temperature than Tg, i.e., with the physical aging.Comment: To be published in Europhys. Let

    Unified description of the optical phonon modes in NN-layer MoTe2_2

    Get PDF
    NN-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three dimensional) and monolayer (quasi two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the Γ\Gamma-point optical phonons in NN-layer 2H2H-molybdenum ditelluride (MoTe2_2). We observe a series of NN-dependent low-frequency interlayer shear and breathing modes (below 40 cm140~\rm cm^{-1}, denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range 100200 cm1100-200~\rm cm^{-1}, denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range 200300 cm1200-300~\rm cm^{-1}, denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in NN-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the E2u/E1gE_{2u}/E_{1g} and B1u/A1gB_{1u}/A_{1g} modes, respectively, and provide a measurement of the frequencies of the bulk silent E2uE_{2u} and B1uB_{1u} optical phonon modes. Our analysis could readily be generalized to other layered crystals.Comment: Main Text (5 Figures, 2 Tables) + Supporting Information (12 Figures
    corecore