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This document contains the following sections:

� Force constant model (Section SI)

� Bulk phonon frequencies (Section SII)

� Normal mode displacements (Section SIII)

� The empirical bond polarizability model (Section SIV)

� Raman Spectra from the bond polarizability model (Section SV)

� Ab-initio bulk phonon modes (Section SVI)

� Additional Raman measurements (Section SVII)
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SI. FORCE CONSTANT MODEL

As explained in the main text, N -layer MoTe2 is modeled as a one-dimensional finite

linear chain composed of 2N Te atoms of mass per unit area µX and N Mo atoms of mass

per unit area µM (see Fig. S1) [1]. Within one MoTe2 layer, nearest neighbor Mo and

Te atoms and the pair of second nearest neighbor Te atoms are connected by springs with

force constants per unit area α and δ respectively. Interlayer interactions are described by

two force constants per unit area β and γ between nearest neighbor Te atoms belonging

to adjacent layers and between second nearest neighbor Mo and Te atoms, respectively.

To account for surface effects, we consider effective force constants αe and δe for the first

and N th layer. Since substrate effects have been shown to have a negligible influence on

the Raman modes of MX2[1–5], we assume that the two extreme layers are only connected

to one layer, i.e., we do not include an additional spring constant that would account for

coupling of one of the outer layers to a substrate.
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FIG. S1: Schematic of the finite linear chain model. µM (µX) is the mass per unit area of

the Mo (Te) atom. α and β are the (intra-plane) force constants that connect the first

nearest neighbor atoms. γ and δ are the (inter-plane) force constants that connect the

second nearest neighbor atoms. ui,j is the displacement, with respect to the equilibrium

position, of the ith atom (i = 1, 3 for Te and i = 2 for Mo) in the jth MoTe2 layer

(j ∈ J1, NK).

We note ui,j the displacement, with respect to the equilibrium position, of the ith atom

(i = 1, 3 for Te and i = 2 for Mo) in the jth MoTe2 layer (j ∈ J1, NK). We can then write

the equations of motion using Newton’s law. These equations form a system of 3N coupled

differential equations that can be written as

d2U
dt2

= −D U , (S1)

with the displacement vector U =
(
u1,1, u2,1, u3,1, . . . , ui,j , . . . , u1,N , u2,N , u3,N

)
and the 3N×

3N dynamical matrix
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.

To find the normal modes, one has to seek for sinusoidal solutions. For this kind of

solutions, Eq. (S1) becomes

D U = ω2 U . (S2)

Therefore, the 3N normal modes, with eigenfrequencies ωk and normal displacements Uk

(k ∈ J1, 3NK), are obtained by diagonalizing the dynamical matrix D.

SII. BULK PHONON FREQUENCIES

To obtain the frequencies of the six bulk normal modes, we use the same model as in the

previous section SI except that we apply the Born von Karman periodic boundary conditions
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to take into account the infinite size of the crystal. In this case, the unit cell of this one-

dimensional Bravais lattice contains the three atoms of one layer. For the nth layer, we

suppose that the equilibrium positions are na for the Mo atom and na − d and na + d for

the two Te atoms. Thus, Mo atoms belonging to adjacent layers are separated by a. With

the same notation as in section SI, we seek for solutions in the form of a plane wave with

frequency ω and wave vector k : uj,n = Aje
−i(ωt−kna) where j = 1, 3 for Te and j = 2 for

Mo, and Aj are constants to be determined, whose ratio specify the relative amplitude and

phase of vibration of the atoms within each layer. By substituting uj,n into the equations of

motion, we obtain three homogeneous equations in terms of Aj. These equations will have

a non-zero solution provided that the determinant of the coefficients vanishes. This yields

[
µXω

2 − (α + β + γ + δ)
]2 [

µMω
2 − 2(α + γ)

]
+ (α + γeika)2(δ + βe−ika) + (α + γe−ika)2(δ + βeika)

−
[
µMω

2 − 2(α + γ)
]

(δ + βeika)(δ + βe−ika)

− 2
[
µXω

2 − (α + β + γ + δ)
]

(α + γeika)(α + γe−ika) = 0. (S3)

The Born von Karman boundary condition leads to N nonequivalent values of k given by

k = 2π
a
p
N

with p an integer. Eq. (S3) does not need be solved for every k. In fact, for the

six bulk normal modes, the displacements of the three atoms within one layer are either

in-phase or out-of-phase with the displacements of the atoms of adjacent layers. Therefore,

k = 0 or k = π
a

respectively. By Solving Eq. (S3) with k = 0 and k = π
a

and using the

symmetry of the atomic displacements, we can get the expression of the six bulk frequencies

associated with the low- (LSM, LBM), mid- (iX and oX) and high-frequency (iMX, oMX)

modes [1].

ω−low = 0, (S4)

ω+
low =

α + γ + 2β

2µX
+
α + γ

µM
−

√(
α + γ + 2β

2µX
− α + γ

µM

)2

+ 2
(α− γ)2

µXµM
, (S5)

ω−mid =
α + γ + 2δ

µX
, (S6)

ω+
mid =

α + γ + 2δ + 2β

µX
, (S7)

ω−high =
(2µX + µM)(α + γ)

µXµM
, (S8)

ω+
high =

α + γ + 2β

2µX
+
α + γ

µM
+

√(
α + γ + 2β

2µX
− α + γ

µM

)2

+ 2
(α− γ)2

µXµM
. (S9)

From the value of the force constants extracted from the fit of our experimental data (see

Table II of the main text), we notice that |α| � |β| , |γ| , |δ|. Thus, we can perform Taylor
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developments of Eqs. (S5) and (S9) to get more convenient expressions

ω+
low ≈ 4

β + 2γ

µ
, (S10)

ω+
high ≈

αµ2 + 2βµ2
M + γ(2µX − µM)2

µµXµM
, (S11)

where µ = 2µX + µM is the mass per unit area of the unit cell. The relative difference

between the results of Eqs. (S10)/(S11) and the exact values obtained using Eqs. (S5)/(S9),

respectively, is lower than 1�.

An interesting quantity than can be deduced from the expressions of the bulk frequencies,

for low-, mid- and high-frequency modes, is the bulk Davydov splitting ∆ω = ω+−ω−. Again

by performing Taylor expansions, we get the following expressions for the Davydov splitting

∆ωlow ≈ 2

√
β + 2γ

µ
, (S12)

∆ωmid ≈
β

α

(
1− γ + 2δ

2α

)√
α

µX
, (S13)

∆ωhigh ≈
(
µ2
M

µ2

β

α
− 4µXµM

µ2

γ

α

)√
αµ

µXµM
. (S14)

The deviation of the results of Eqs. (S12) and (S13) from the exact values deduced from

Eqs. (S4)-(S7) is lower than 1%, and the deviation of the results of Eqs. (S14) from the

exact values deduced from Eqs. (S8) and (S9) is lower than 10%.

Interestingly, the high-frequency Davydov splitting (Eq. (S14)) is the only one that can

be negative since α � β, γ, δ . If µM
4µX

β
γ
≥ 1 the splitting is normal and the bulk high-

frequency in-phase mode has a lower frequency than the bulk high-frequency out of phase

mode. Otherwise, the splitting is anomalous, as it has been reported for the iMX mode in

bulk transition metal dichalcogenides [6].
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SIII. NORMAL MODE DISPLACEMENTS

Figures S2 to S7 show the normal mode displacements associated with the LSM, iX, iMX,

LBM, oX, and oMX modes in N -layer MoTe2.
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FIG. S2: Calculated normal displacements associated with the LSM in N = 1 to N = 6

layers MoTe2. The size of the arrows is proportional to the amplitude of uki,j of the normal

displacement obtained from the solution of Eq. (S1). The frequencies of the modes

increase from left to right. The irreductible representation of each normal mode is

indicated. The modes that are Raman-active in our geometry appear in black. The other

modes appear in grey.
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FIG. S3: Same as Fig. S2 for the iX modes in N = 1 to N = 6 layers MoTe2.
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FIG. S4: Same as Fig. S2 for the iMX modes in N = 1 to N = 6 layers MoTe2.
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FIG. S5: Same as Fig. S2 for the LBM in N = 1 to N = 6 layers MoTe2.
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FIG. S6: Same as Fig. S2 for the oX modes in N = 1 to N = 6 layers MoTe2.
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FIG. S7: Same as Fig. S2 for the oMX modes in N = 1 to N = 6 layers MoTe2.
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SIV. THE EMPIRICAL BOND POLARIZABILITY MODEL

In the Placzek approximation, the Raman intensity for non resonant first order scattering

is given by

Iν ∝ |ei ·Aν
· es|2

1

ων
(nν + 1), (S15)

where ei and es are the polarizations of the incident and the scattered light respectively, ων

is the Raman frequency, and nν = [exp(~ων/kBT )−1]−1 with T being the temperature. The

Raman tensor Aν is related to the change of the polarizability α under atomic displacement.

It can be calculated as

Aνij =
∑
kγ

Bkγ
ij

ξνkγ√
Mγ

(S16)

where ξνkγ is the kth Cartesian component of atom γ of the νth orthonormal vibrational

eigenvector Mγ is the atomic mass, and

Bkγ
ij =

∂3E
∂Ei∂Ej∂ukγ

=
∂αij
∂ukγ

. (S17)

E is the total energy in the unit cell, E is a uniform electric field, ukγ is the kth component

of the atomic displacement u of the atom γ and αij is the electronic polarizability tensor.

The bond polarizability model approximates the total polarizability of the atom as the sum

of the individual bond polarizabilities. Under the assumption that the bonds have cylindrical

symmetry, the polarizability tensor for a single bond can be written as

αbij =
1

3
(2αp + αl)δij + (αl − αp)

(
R̂iR̂j −

1

3
δij

)
= αpδij + (αl − αp)R̂iR̂j

(S18)

where αl and αp are longitudinal and perpendicular polarizabilities of the bond and R̂i are the

components of the unit vector along the bond. Moreover, in the model, the polarizabilities

depend only on the length of the bond (R =
√
R ·R). The bond vector R joining atoms γ

to atom γ′ is given by

R = Rγ −Rγ′ + uγ − uγ′ (S19)

and
∂α(R)

∂ukγ
=
∂α(R)

∂R

∂R

∂ukγ

=
∂α(R)

∂R

1

2
√

R ·R

(
R ·

∂R

∂ukγ
+

∂R

∂ukγ
·R

)
=
∂α(R)

∂R

1

2R
(−2Rk)

(S20)

14



Hence,
∂α(R)

∂ukγ(l)
= α′R̂k (S21)

where α′ =-∂α(R)
∂R

. The contribution of a particular bond b to the B tensor is therefore

∂αbij
∂ukγ

= α′pR̂kδij + (α′l − α′p)R̂iR̂jR̂k + (αl − αp)((∂kR̂i)R̂j + (∂kR̂j)R̂i) (S22)

with

∂kR̂i = − 1

R

(
δik − R̂iR̂k

)
(S23)

In the 2H structure of MoTe2, the Molybdenum atom is bonded to six Tellurium atoms and

the Tellurium atom is bonded to three Molybdenum atoms. In our calculations, we neglect

the weak inter-layer bonds. That is the reason why we don’t get a finite peak for the E2
2g

(shear) mode with this model.

The calculated B tensors are as follows:

Bx(Te1) =

 0 −p
2
q

−p
2

0 0

q 0 0

 By(Te1) =


−p
2

0 0

0 p
2
q

0 q 0

 Bz(Te1) =

a 0 0

0 a 0

0 0 b



Bx(Mo1) =

0 p 0

p 0 0

0 0 0

 By(Mo1) =

p 0 0

0−p 0

0 0 0

 Bz(Mo1) =

0 0 0

0 0 0

0 0 0



Bx(Te2) =

 0 −p
2
−q

−p
2

0 0

−q 0 0

 By(Te2) =


−p
2

0 0

0 p
2
−q

0 −q 0

 Bz(Te2) =

−a 0 0

0 −a 0

0 0 −b



Bx(Te3) =

0 p
2
q

p
2

0 0

q 0 0

 By(Te3) =


p
2

0 0

0 −p
2
q

0 q 0

 Bz(Te3) =

a 0 0

0 a 0

0 0 b



Bx(Mo2) =

 0 −p 0

−p 0 0

0 0 0

 By(Mo2) =

−p 0 0

0 p 0

0 0 0

 Bz(Mo2) =

0 0 0

0 0 0

0 0 0



Bx(Te4) =

 0 p
2
−q

p
2

0 0

−q 0 0

 By(Te4) =


p
2

0 0

0 −p
2
−q

0−q 0

 Bz(Te4) =

−a 0 0

0 −a 0

0 0 −b
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The values of the constants a, b, p and q, in terms of the polarizabilities and their derivatives,

obtained after substituting the MoTe2 lattice parameters are:

a = −0.24αl − 0.56α′l + 0.24αt − 1.40α′t

b = 0.48αl − 0.84α′l − 0.48αt − 1.12α′t

p = 0.28αl + 0.64α′l − 0.28αt − 0.64α′t

q = 0.18αl − 0.56α′l − 0.18αt + 0.56α′t

(S24)

SV. RAMAN SPECTRA FROM THE BOND POLARIZABILITY MODEL

With the bond polarizability model, we can assign a Raman intensity to each Raman

frequency obtained with the force constant model. While active Raman modes agree with

group theory and experimental data, the model does not include Raman resonance effects,

and some discrepancies arise when we compare with experimental spectra. Figure S8 shows

the theoretical Raman spectra for the modes iX, oX, iMX, and oMX. The spectra for dif-

ferent n values are offset for clarity. The iX mode has bN/2c active subfeatures in N−layer

MoTe2 and is in nice agreement with the spectra of Fig. 3.

For the iMX mode, there are two close peaks for N ≥ 3; one being an inner mode (with

lower frequency) and the other being a surface mode (with higher frequency). The difference

in their frequencies is around 0.5 cm−1.The absolute intensity of the inner mode increases

almost linearly with number of layers, as there are more layers vibrating, whereas the ab-

solute intensity of the surface mode is independent of number of layers, as only the outer

molecules are vibrating. As a result, the relative intensity of the surface mode drops as N

increases, and thus the maximum of the combined peak shifts to smaller frequencies as N

increases.

In the case of the oX mode our model reproduces the dN/2e active subfeatures well, but it

fails in describing the observed relative intensity between peaks. The highest frequency peak

in the oX-mode feature has much larger relative intensity than the rest of the peaks in the

model, which is in contrast to our measurements, where all the phonons have comparable

intensities. We can understand this result from the shape of the Bz tensors shown above.

The largest contribution occurs when all the Te layers are out-of-phase with the neighboring

Te layers. In case two layers vibrate in-phase, they cancel each other, and therefore increas-

ing the number of layers in-phase reduces the intensity drastically. The similar intensity of

the A′1 peaks suggest the participation of Raman resonance effects.

For the oMX mode, the surface phonons, which are split from the inner modes, have much

larger intensity than the inner modes in the model. From the Raman tensors, if tellurium

atoms in the same layer vibrate in-phase and with identical amplitude, the intensity is identi-

cally zero. Only differences in the amplitudes can generate Raman signal, which will be very
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small in comparison with the intensity of the oX modes. The largest amplitude differences

are due to surface phonons, which carry most of the contribution to the Raman intensity

and it results in the sole peak observed in the Raman spectra. A feature assigned to the

inner modes is slightly visible in the measured spectra at EL = 1.96 eV (see Fig. 3(c) in the

main text) but not at EL = 2.33 eV, which, again, suggests a resonance effect at EL = 1.96

eV, similar to the oX mode.

(a) iX Model (b) oX Mode (c) iMX Mode (d) oMX Mode

FIG. S8: Raman Spectra obtained with the bond polarizability model.
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SVI. AB-INITIO BULK PHONON MODES

We have complemented the empirical model with ab-initio calculations of the phonon

modes for bulk MoTe2. We have used density functional perturbation theory (DFPT) [7] as

implemented in the Quantum Espresso code [8]. We used the local-density approximation

(LDA) which does not properly take into account van der Waals interaction between the

layers but nevertheless gives decent result for the phonons of many layered systems because it

overestimates the weak covalent part of the inter-layer bonding. The energy cutoff is 80 Ry,

and the Monkhorst-Pack sampling of the k−grid is 12×12×4. The optimized lattice vectors

are a = 3.499 Åand c = 13.829 Å. Figure S9 shows the ab-initio frequencies together with

the corresponging phonon eigenvectors. We have grouped the phonon modes in Davydov

pairs, except the shear and layer-breathing modes (whose “Davydov partner” would be a

zero frequency acoustic mode). We observe a positive Davydov splitting for the iX, oX

and oMX modes and a negative Davydov splitting for the mode iMX mode, as reported

for other transition metal dichalcogenides [6]. The calculated Davydov-splitting of the iX

mode is 2.1 cm−1 (compared to the 2.7 cm−1 extrapolated from the measurements). For the

oX mode, we obtain a splitting of 3.2 cm−1 (compared to 4.7 cm−1 from the experiments).

The agreement between calculations and experiment is not perfect because of the lack of a

proper treatment of van der Waals interaction with local exchange-correlation functionals.

The predicted Davydov-Splitting for the oMX mode is 5.8 cm−1. For the calculation of the

frequency of the A2u mode, we have not taken into account the coupling to an external-

electric field (Lydanne-Sachs-Teller interaction) that would lead to an up-shift of this mode.

However, in layers of finite width, this interaction is absent.
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FIG. S9: Optical phonon modes of bulk MoTe2. In the first row, modes with in-plane

polarization in ascending order of frequency. In the second row, the out-of-plane modes are

shown. Davydov pairs of phonon modes are plotted in one box.
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SVII. ADDITIONAL RAMAN MEASUREMENTS

Figure S10 shows the raw Raman spectra of N -layer MoTe2 recorded at EL = 2.33 eV

and EL = 1.96 eV. Note that the iX mode has not been studied at EL = 1.96 eV due to the

relatively large bandwidth of our Notch filter at EL = 1.96 eV.
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FIG. S10: Micro-Raman spectra of N−layer MoTe2 recorded under the same conditions at

a photon energy of (a) 2.33 eV and (b) 1.96 eV. The spectra are vertically offset for clarity.

Figure S11 shows Raman spectra of the oX, iMX and oMX modes in N -layer MoTe2

recorded at EL = 2.33 eV. The results recorded at EL = 1.96 eV are discussed in the main

manuscript. At EL = 2.33 eV, the Davydov splitting also appears clearly for the oX feature,

although the highest energy subfeature contains most of the oscillator strength for N ≥ 6.

The iMX feature also downshifts as N increases and no appreciable splitting can be resolved.

However, in contrast with our results at EL = 1.96 eV, the oMX feature does not exhibit

any measurable splitting at EL = 2.33 eV.

The corresponding fan diagrams associated with oX-, iMX and oMX-mode frequencies

recorded at EL = 2.33 eV are shown in Fig. S12, together with the fan diagrams for oX and

oMX modes extracted from the data recorded at EL = 1.96 eV and discussed in details in

the main text. These two sets of data are very consistent with each other. Still, we can

notice a small rigid shift of approximately 0.2 cm−1 which is smaller than the resolution of

our experimental setup. This shift presumably arises from uncertainties (below our spectral

resolution) in the calibration of our spectrometer. Importantly such a small shift has a

negligible influence on the determination of the force constants. Indeed, the latter vary by
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less 1.5 % if one uses the oX, oMX and iMX frequencies recorded at EL = 2.33 eV instead of

their values recorded at EL = 1.96 eV in the global fitting procedure described in the main

manuscript.
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FIG. S11: Normalized Micro-Raman spectra of the (a) oX, (b) iMX, and (c) oMX

mode-features in N−layer MoTe2 recorded at EL = 2.33 eV. The measured Raman

features (symbols) are fit to Voigt profiles (solid lines). For the modes that show a

Davydov splitting, each subpeak is represented with a colored dashed line. A featureless

background (grey dashed line) has been considered when necessary.
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fits as a function of the number of layers N . Green squares (red circles) correspond to data

recorded at EL = 2.33 eV (EL = 1.96 eV).
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