280 research outputs found
Comparison of solar photospheric bright points between SUNRISE observations and MHD simulations
Bright points (BPs) in the solar photosphere are radiative signatures of
magnetic elements described by slender flux tubes located in the darker
intergranular lanes. They contribute to the ultraviolet (UV) flux variations
over the solar cycle and hence may influence the Earth's climate. Here we
combine high-resolution UV and spectro-polarimetric observations of BPs by the
SUNRISE observatory with 3D radiation MHD simulations. Full spectral line
syntheses are performed with the MHD data and a careful degradation is applied
to take into account all relevant instrumental effects of the observations. It
is demonstrated that the MHD simulations reproduce the measured distributions
of intensity at multiple wavelengths, line-of-sight velocity, spectral line
width, and polarization degree rather well. Furthermore, the properties of
observed BPs are compared with synthetic ones. These match also relatively
well, except that the observations display a tail of large and strongly
polarized BPs not found in the simulations. The higher spatial resolution of
the simulations has a significant effect, leading to smaller and more numerous
BPs. The observation that most BPs are weakly polarized is explained mainly by
the spatial degradation, the stray light contamination, and the temperature
sensitivity of the Fe I line at 5250.2 \AA{}. The Stokes asymmetries of the
BPs increase with the distance to their center in both observations and
simulations, consistent with the classical picture of a production of the
asymmetry in the canopy. This is the first time that this has been found also
in the internetwork. Almost vertical kilo-Gauss fields are found for 98 % of
the synthetic BPs. At the continuum formation height, the simulated BPs are on
average 190 K hotter than the mean quiet Sun, their mean BP field strength is
1750 G, supporting the flux-tube paradigm to describe BPs.Comment: Accepted for publication in Astronomy & Astrophysics on May 30 201
EXPRESSION OF A FUNCTIONAL CHIMERIC lg-MHC CLASS II PROTEIN
composed of the a- and ß-chains of the MHC class I1
I-E molecule fused to antibody V regions derived
from anti-human CD4 mAb MT310. Expression vectors
were constructed containing the functional,
rearranged gene segments coding for the V region
domains of the antibody H and L chains in place of
the first domains of the complete structural genes
of the I-E a- and ß-chains, respectively. Celltsr ansfected
with both hybrid genes expressed a stable
protein product on the cell surface. The chimeric
molecule exhibited the idiotype of the antibody
MT310 as shown by binding to the anti-idiotypic
mAb 20-46. A protein of the anticipated molecular
mass was immunoprecipitated witha nti-mouse IgG
antiserum. Furthermore, human soluble CD4 did
bind to thetr ansfected cell line, demonstrating that
the chimeric protein possessed the binding capacity
of the original mAb. Thus, the hybrid molecule retained:
1) the properties of a MHC class I1 protein
with regardt o correct chain assembly and transport
to the cell surface: as well as 2) the Ag binding
capacity of the antibody genes used. Thgee neration
of hybrid MHC class I1 molecules with highly specific,
non-MHC-restricted bindingc apacities will be
useful for studying MHC class 11-mediated effector
functions such as selection of the T cell repertoire
in thymus of transgenic mice
Brightness, distribution, and evolution of sunspot umbral dots
We present a 106-minute TiO (705.7nm) time series of high spatial and
temporal resolution that contains thousands of umbral dots (UDs) in a mature
sunspot in the active region NOAA 10667 at =0.95. The data were acquired
with the 1-m Swedish Solar Telescope on La Palma. With the help of a multilevel
tracking (MLT) algorithm the sizes, brightnesses, and trajectories of 12836
umbral dots were found and analyzed. The MLT allows UDs with very low contrast
to be reliably identified. Inside the umbra we determine a UD filling factor of
11%. The histogram of UD lifetimes is monotonic, i.e. a UD does not have a
typical lifetime. Three quarters of the UDs lived for less than 150s and showed
no or little motion. The histogram of the UD diameters exhibits a maximum at
225km, i.e. most of the UDs are spatially resolved. UDs display a typical
horizontal velocity of 420m/s and a typical peak intensity of 51% of the mean
intensity of the quiet photosphere, making them on average 20% brighter than
the local umbral background. Almost all mobile UDs (large birth-death distance)
were born close to the umbra-penumbra boundary, move towards the umbral center,
and are brighter than average. Notably bright and mobile UDs were also observed
along a prominent UD chain, both ends of which are located at the
umbra-penumbra boundary. Their motion started primarily at either of the ends
of the chain, continued along the chain, and ended near the chain's center. We
observed the splitting and merging of UDs and the temporal succession of both.
For the first time the evolution of brightness, size, and horizontal speed of a
typical UD could be determined in a statistically significant way. Considerable
differences between the evolution of central and peripheral UDs are found,
which point to a difference in origin
Stratification of sunspot umbral dots from inversion of Stokes profiles recorded by Hinode
This work aims to constrain the physical nature of umbral dots (UDs) using
high-resolution spectropolarimetry. Full Stokes spectra recorded by the
spectropolarimeter on Hinode of 51 UDs in a sunspot close to the disk center
are analyzed. The height dependence of the temperature, magnetic field vector,
and line-of-sight velocity across each UD is obtained from an inversion of the
Stokes vectors of the two FeI lines at 630 nm. No difference is found at higher
altitudes (-3 <= log(tau) <= -2) between the UDs and the diffuse umbral
background. Below that level the difference rapidly increases, so that at the
continuum formation level (log(tau) = 0) we find on average a temperature
enhancement of 570 K, a magnetic field weakening of 510 G, and upflows of 800
m/s for peripheral UDs, whereas central UDs display an excess temperature of on
average 550 K, a field weakening of 480 G, and no significant upflows. The
results for, in particular, the peripheral UDs, including cuts of magnetic
vector and velocity through them, look remarkably similar to the output of
recent radiation MHD simulations. They strongly suggest that UDs are produced
by convective upwellings
First high-resolution images of the Sun in the 2796 \AA{} Mg II k line
We present the first high-resolution solar images in the Mg II k 2796 \AA{}
line. The images, taken through a 4.8 \AA{} broad interference filter, were
obtained during the second science flight of SUNRISE in June 2013 by the SuFI
instrument. The Mg II k images display structures that look qualitatively very
similar to images taken in the core of Ca II H. The Mg II images exhibit
reversed granulation (or shock waves) in the internetwork regions of the quiet
Sun, at intensity contrasts that are similar to those found in Ca II H. Very
prominent in Mg II are bright points, both in the quiet Sun and in plage
regions, particularly near disk center. These are much brighter than at other
wavelengths sampled at similar resolution. Furthermore, Mg II k images also
show fibril structures associated with plage regions. Again, the fibrils are
similar to those seen in Ca II H images, but tend to be more pronounced,
particularly in weak plage.Comment: Accepted for publication in The Astrophysical Journal Letter
Moving Magnetic Features around a Pore
Spectropolarimetric observations from Sunrise II/IMaX obtained in June 2013
are used for a statistical analysis to determine the physical properties of
moving magnetic features (MMFs) observed near a pore. MMFs of the same and
opposite polarity with respect to the pore are found to stream from its border
at an average speed of 1.3 km s and 1.2 km s respectively, with
mainly same-polarity MMFs found further away from the pore. MMFs of both
polarities are found to harbor rather weak, inclined magnetic fields.
Opposite-polarity MMFs are blue-shifted, while same-polarity MMFs do not show
any preference for up- or downflows. Most of the MMFs are found to be of
sub-arcsecond size and carry a mean flux of 1.2 Mx.Comment: 8 pages, 4 figures, accepted for publication in ApJ
Downflows in sunspot umbral dots
We study the velocity field of umbral dots at a resolution of 0.14". Our
analysis is based on full Stokes spectropolarimetric measurements of a pore
taken with the CRISP instrument at the Swedish 1-m Solar Telescope. We
determine the flow velocity at different heights in the photosphere from a
bisector analysis of the Fe I 630 nm lines. In addtion, we use the observed
Stokes Q, U, and V profiles to characterize the magnetic properties of these
structures. We find that most umbral dots are associated with strong upflows in
deep photospheric layers. Some of them also show concentrated patches of
downflows at their edges, with sizes of about 0.25", velocities of up to 1000
m/s, and enhanced net circular polarization signals. The downflows evolve
rapidly and have lifetimes of only a few minutes. These results appear to
validate numerical models of magnetoconvection in the presence of strong
magnetic fields.Comment: Final published version. For best quality figures, please download
the PS versio
Corporate Governance, Opaque Bank Activities, and Risk/Return Efficiency: Pre- and Post-Crisis Evidence from Turkey
Does better corporate governance unambiguously improve the risk/return efficiency of banks? Or does either a re-orientation of banks' revenue mix towards more opaque products, an economic downturn, or tighter supervision create off-setting or reinforcing effects? The authors relate bank efficiency to shortfalls from a stochastic risk/return frontier. They analyze how internal governance mechanisms (CEO duality, board experience, political connections, and education profile) and external governance mechanisms (discipline exerted by shareholders, depositors, or skilled employees) determine efficiency in a sample of Turkish banks. The 2000 financial crisis was a wakeup call for bank efficiency and corporate governance. As a result, better corporate governance mechanisms have been able to improve risk/return efficiency when the economic, regulatory, and supervisory environments are more stable and bank products are more complex.corporate governance;bank risk;noninterest income;crisis;frontier
Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun
The observed magnetic field on the solar surface is characterized by a very
complex spatial and temporal behavior. Although feature-tracking algorithms
have allowed us to deepen our understanding of this behavior, subjectivity
plays an important role in the identification and tracking of such features. In
this paper, we continue studies Gorobets, A. Y., Borrero, J. M., & Berdyugina,
S. 2016, ApJL, 825, L18 of the temporal stochasticity of the magnetic field on
the solar surface without relying either on the concept of magnetic features or
on subjective assumptions about their identification and interaction. We
propose a data analysis method to quantify fluctuations of the line-of-sight
magnetic field by means of reducing the temporal field's evolution to the
regular Markov process. We build a representative model of fluctuations
converging to the unique stationary (equilibrium) distribution in the long time
limit with maximum entropy. We obtained different rates of convergence to the
equilibrium at fixed noise cutoff for two sets of data. This indicates a strong
influence of the data spatial resolution and mixing-polarity fluctuations on
the relaxation process. The analysis is applied to observations of magnetic
fields of the relatively quiet areas around an active region carried out during
the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center
from the Helioseismic and Magnetic Imager on board the Solar Dynamics
Observatory satellite.Comment: 11 pages, 5 figures, The Astrophysical Journal Supplement Series
(accepted
Morphological properties of slender Ca II H fibrils observed by SUNRISE II
We use seeing-free high spatial resolution Ca II H data obtained by the
SUNRISE observatory to determine properties of slender fibrils in the lower
solar chromosphere. In this work we use intensity images taken with the SUFI
instrument in the Ca II H line during the second scientific flight of the
SUNRISE observatory to identify and track elongated bright structures. After
the identification, we analyze theses structures in order to extract their
morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with
an average width of around 180 km, a length between 500 km and 4000 km, an
average lifetime of ~400 s, and an average curvature of 0.002 arcsec^-1. The
maximum lifetime of the SCFs within our time series of 57 minutes is ~2000 s.
We discuss similarities and differences of the SCFs with other small-scale,
chromospheric structures such as spicules of type I and II, or Ca II K fibrils.Comment: Accepted for publication in The Astrophysical Journal Supplement
Serie
- …