131 research outputs found

    Half-ordered state in the anisotropic Haldane-gap antiferromagnet NDMAP

    Full text link
    Neutron diffraction experiments performed on the Haldane gap material NDMAP in high magnetic fields applied at an angle to the principal anisotropy axes reveal two consecutive field-induced phase transitions. The low-field phase is the gapped Haldane state, while at high fields the system exhibits 3-dimensional long-range Neel order. In a peculiar phase found at intermediate fields only half of all the spin chains participate in the long-range ordering, while the other half remains disordered and gapped.Comment: 4 pages, 2 figures, submitted to Phys. Rev.

    Magnetic frustration in an iron based Cairo pentagonal lattice

    Get PDF
    The Fe3+ lattice in the Bi2Fe4O9 compound is found to materialize the first analogue of a magnetic pentagonal lattice. Due to its odd number of bonds per elemental brick, this lattice, subject to first neighbor antiferromagnetic interactions, is prone to geometric frustration. The Bi2Fe4O9 magnetic properties have been investigated by macroscopic magnetic measurements and neutron diffraction. The observed non-collinear magnetic arrangement is related to the one stabilized on a perfect tiling as obtained from a mean field analysis with direct space magnetic configurations calculations. The peculiarity of this structure arises from the complex connectivity of the pentagonal lattice, a novel feature compared to the well-known case of triangle-based lattices

    Phase Diagram of the Dzyaloshinskii-Moriya Helimagnet Ba2CuGe2O7 in Canted Magnetic Fields

    Full text link
    The evolution of different magnetic structures of non-centrosymmetric Ba2CuGe2O7 is systematically studied as function of the orientation of the magnetic field H. Neutron diffraction in combination with measurements of magnetization and specific heat show a virtually identical behaviour of the phase diagram of Ba2CuGe2O7 for H confined in both the (1,0,0) and (1,1,0) plane. The existence of a recently proposed incommensurate double-k AF-cone phase is confirmed in a narrow range for H close to the tetragonal c-axis. For large angles enclosed by H and the c-axis a complexely distorted non-sinusoidal magnetic structure has recently been observed. We show that its critical field Hc systematically increases for larger canting. Measurements of magnetic susceptibility and specific heat finally indicate the existence of an incommensurate/commensurate transition for H /sim 9 T applied in the basal (a,b)-plane and agree with a non-planar, distorted cycloidal magnetic structure.Comment: 14 pages, 13 figure

    Cooperative ordering of gapped and gapless spin networks in Cu2_2Fe2_2Ge4_4O13_{13}

    Full text link
    The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu2_2Fe2_2Ge4_4O13_{13} are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.Comment: 4 pages, 4 figure

    Single domain magnetic helicity and triangular chirality in structurally enantiopure Ba3NbFe3Si2O14

    Get PDF
    A novel doubly chiral magnetic order is found out in the structurally chiral langasite compound Ba3_3NbFe3_3Si2_2O14_{14}. The magnetic moments are distributed over planar frustrated triangular lattices of triangle units. On each of these they form the same triangular configuration. This ferro-chiral arrangement is helically modulated from plane to plane. Unpolarized neutron scattering on a single crystal associated with spherical neutron polarimetry proved that a single triangular chirality together with a single helicity is stabilized in an enantiopure crystal. A mean field analysis allows discerning the relevance on this selection of a twist in the plane to plane supersuperexchange paths

    Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres

    Full text link
    The bulk composition of an exoplanet is commonly inferred from its average density. For small planets, however, the average density is not unique within the range of compositions. Variations of a number of important planetary parameters--which are difficult or impossible to constrain from measurements alone--produce planets with the same average densities but widely varying bulk compositions. We find that adding a gas envelope equivalent to 0.1%-10% of the mass of a solid planet causes the radius to increase 5-60% above its gas-free value. A planet with a given mass and radius might have substantial water ice content (a so-called ocean planet) or alternatively a large rocky-iron core and some H and/or He. For example, a wide variety of compositions can explain the observed radius of GJ 436b, although all models require some H/He. We conclude that the identification of water worlds based on the mass-radius relationship alone is impossible unless a significant gas layer can be ruled out by other means.Comment: 5 pages, 3 figures, accepted to Ap

    Low temperature structural effects in the (TMTSF)2_2PF6_6 and AsF6_6 Bechgaard salts

    Full text link
    We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)2_2PF6_6 and (TMTSF)2_2AsF6_6 (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)2_2PF6_6-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)2_2PF6_6-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 102^2 MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF6_6 and AsF6_6 salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {\theta}E_E = 8.3 K and {\theta}E_E = 6.7 K for the PF6_6-D12 and AsF6_6-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)2_2PF6_6 is dominated by the librational motion of the PF6_6 units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {\theta}E_E = 50 K and {\theta}E_E = 76 K for the PF6_6-D12 and PF6_6-H12 salts, respectively
    • …
    corecore