The bulk composition of an exoplanet is commonly inferred from its average
density. For small planets, however, the average density is not unique within
the range of compositions. Variations of a number of important planetary
parameters--which are difficult or impossible to constrain from measurements
alone--produce planets with the same average densities but widely varying bulk
compositions. We find that adding a gas envelope equivalent to 0.1%-10% of the
mass of a solid planet causes the radius to increase 5-60% above its gas-free
value. A planet with a given mass and radius might have substantial water ice
content (a so-called ocean planet) or alternatively a large rocky-iron core and
some H and/or He. For example, a wide variety of compositions can explain the
observed radius of GJ 436b, although all models require some H/He. We conclude
that the identification of water worlds based on the mass-radius relationship
alone is impossible unless a significant gas layer can be ruled out by other
means.Comment: 5 pages, 3 figures, accepted to Ap