518 research outputs found
Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae)
© 2014 The Author(s). Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors
Extrapair paternity in two populations of the socially monogamous Thorn-tailed Rayadito Aphrastura spinicauda (Passeriformes: Furnariidae)
Studies on extrapair paternity (EPP) are key to understanding the ecological and evolutionary drivers of variation in avian mating strategies, but information is currently lacking for most tropical and subtropical taxa. We describe the occurrence of EPP in two populations of a South American socially monogamous bird, the Thorn-tailed Rayadito, based on data from 266 broods and 895 offspring that were sampled during six breeding seasons in north-central and southern Chile. In the northern population, 21% of the broods contained at least one extrapair young and 14% of all offspring were sired by an extrapair male, while in the southern population, we detected extrapair offspring (EPO) in 14% of the broods, and 6% of all offspring were EPO. Variation in the frequency of EPP could stem from population differences in the duration of the breeding season or the density of breeding individuals. Other factors such as differences in breeding synchrony and variation in food availability need to be evaluated. More reports on EPP rates are necessary to determine the patterns of taxonomic and geographic variation in mating strategies in Neotropical birds, and to better understand the differences in ecological dynamics between northern and southern hemisphere populations.Fil: Botero Delgadillo, Esteban. Max Plank Institute For Ornithology; Alemania. SELVA: Investigación para la Conservación en el Neotrópico; Colombia. Universidad de Chile; ChileFil: Quirici, Verónica. Universidad Andrés Bello; ChileFil: Poblete, Yanina. Universidad de Las Américas; ChileFil: Ippi, Silvina Graciela. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Departamento de Ecología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Kempenaers, Bart. Max Plank Institute For Ornithology; AlemaniaFil: Vásquez, Rodrigo A.. Universidad de Chile; Chil
A three dimensional model of the photosynthetic membranes of Ectothiorhodospira halochloris
The three dimensional organization of the complete photosynthetic apparatus of the extremely halophilic, bacteriochlorophyll b containing Ectothiorhodospira halochloris has been elaborated by several techniques of electron microscopy. Essentially all thylakoidal sacs are disc shaped and connected to the cytoplasmic membrane by small membraneous ldquobridgesrdquo. In sum, the lumina of all thylakoids (intrathylakoidal space) form one common periplasmic space. Thin sections confirm a paracrystalline arrangement of the photosynthetic complexes in situ. The ontogenic development of the photosynthetic apparatus is discussed based on a structural model derived from serial thin sections
Scientific names of organisms : attribution, rights, and licensing
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Research Notes 7 (2014): 79, doi:10.1186/1756-0500-7-79.As biological disciplines extend into the ‘big data’ world, they will need a names-based infrastructure to index and interconnect distributed data. The infrastructure must have access to all names of all organisms if it is to manage all information. Those who compile lists of species hold different views as to the intellectual property rights that apply to the lists. This creates uncertainty that impedes the development of a much-needed infrastructure for sharing biological data in the digital world. The laws in the United States of America and European Union are consistent with the position that scientific names of organisms and their compilation in checklists, classifications or taxonomic revisions are not subject to copyright. Compilations of names, such as classifications or checklists, are not creative in the sense of copyright law. Many content providers desire credit for their efforts. A ‘blue list’ identifies elements of checklists, classifications and monographs to which intellectual property rights do not apply. To promote sharing, authors of taxonomic content, compilers, intermediaries, and aggregators should receive citable recognition for their contributions, with the greatest recognition being given to the originating authors. Mechanisms for achieving this are discussed
Molecular Phylogenetics and the Diversification of Hummingbirds
SummaryThe tempo of species diversification in large clades can reveal fundamental evolutionary mechanisms that operate on large temporal and spatial scales [1–4]. Hummingbirds have radiated into a diverse assemblage of specialized nectarivores comprising 338 species, but their evolutionary history has not, until now, been comprehensively explored. We studied hummingbird diversification by estimating a time-calibrated phylogeny for 284 hummingbird species, demonstrating that hummingbirds invaded South America by ∼22 million years ago, and subsequently diversified into nine principal clades (see [5–7]). Using ancestral state reconstruction and diversification analyses, we (1) estimate the age of the crown-group hummingbird assemblage, (2) investigate the timing and patterns of lineage accumulation for hummingbirds overall and regionally, and (3) evaluate the role of Andean uplift in hummingbird speciation. Detailed analyses reveal disparate clade-specific processes that allowed for ongoing species diversification. One factor was significant variation among clades in diversification rates. For example, the nine principal clades of hummingbirds exhibit ∼15-fold variation in net diversification rates, with evidence for accelerated speciation of a clade that includes the Bee, Emerald, and Mountain Gem groups of hummingbirds. A second factor was colonization of key geographic regions, which opened up new ecological niches. For example, some clades diversified in the context of the uplift of the Andes Mountains, whereas others were affected by the formation of the Panamanian land bridge. Finally, although species accumulation is slowing in all groups of hummingbirds, several major clades maintain rapid rates of diversification on par with classical examples of rapid adaptive radiation
Age and terminal reproductive attempt influence laying date in the Thorn‐tailed Rayadito
Age‐specific variation in reproductive effort can affect population dynamics, and is a key component of the evolution of reproductive tactics. Late‐life declines are a typical feature of variation in reproduction. However, the cause of these declines, and thus their implications for the evolution of life‐history tactics, may differ. Some prior studies have shown late‐life reproductive declines to be tied to chronological age, whereas other studies have found declines associated with terminal reproduction irrespective of chronological age. We investigated the extent to which declines in late life reproduction are related to chronological age, terminal reproductive attempt or a combination of both in the Thorn‐tailed Rayadito (Aphrastura spinicauda), a small passerine bird that inhabits the temperate forest of South America. To this end we used long‐term data (10 years) obtained on reproductive success (laying date, clutch size and nestling weight) of females in a Chilean population. Neither chronological age nor terminal reproductive attempt explained variation in clutch size or nestling weight, however we observed that during the terminal reproductive attempt older females tended to lay later in the breeding season and younger females laid early in the breeding season, but this was not the case when the reproductive attempt was not the last. These results suggests that both age‐dependent and age‐independent effects influence reproductive output and therefore that the combined effects of age and physiological condition may be more relevant than previously thought
Interactions Between Zooplankton and Karenia brevis in the Gulf of Mexico.
Blooms of the toxic dinoflagellate K. brevis are common in the Gulf of Mexico, yet no in situ studies of the interactions between zooplankton and K. brevis in the Gulf of Mexico have been conducted. Zooplankton numerical abundance, biomass and taxonomic composition of nonbloom and K. brevis bloom stations within the ECOHAB study area were compared. At nonbloom stations, the most important determinant species were Parvolcalanus crassirostris, Oithona colcarva and Paracalanus quasimodo at the 5-m isobath and P. quasimodo, O. colcarva and Oikopleura dioka at the 25-m isobath. There was considerable overlap between the 5 and 25-m isobaths, with 9 species contributing to the top 90% of numerical abundance at both isobaths. Within K. brevis blooms Acartia tonsa, Centropages velificatus, Temora turbinata, Evadne tergestina, O. colcarva, O. dioika, and P. crassirostris were consistently dominant. Variations between non-bloom and bloom assemblages were evident, including variations in numerical abundance and biomass and the reduction in numerical abundance of 3 key species. Calculated grazing pressure proved insufficient to terminate K. brevis blooms, despite occasional grazing hot spots
- …