1,390 research outputs found

    Pressure effects on charge, spin, and metal-insulator transitions in narrow bandwidth manganite Pr1−x_{1-x}Cax_{x}MnO3_{3}

    Full text link
    Pressure effects on the charge and spin states and the relation between the ferromagnetic and metallic states were explored on the small bandwidth manganite Pr1−x_{1-x}Cax_{x}MnO3_{3} (x = 0.25, 0.3, 0.35). Under pressure, the charge ordering state is suppressed and a ferromagnetic metallic state is induced in all three samples. The metal-insulator transition temperature (TMI_{MI}) increases with pressure below a critical point P*, above which TMI_{MI} decreases and the material becomes insulating as at the ambient pressure. The eg_{g} electron bandwidth and/or band-filling mediate the pressure effects on the metal-insulator transition and the magnetic transition. In the small bandwidth and low doping concentration compound (x = 0.25), the TMI_{MI} and Curie temperature (TC_{C}) change with pressure in a reverse way and do not couple under pressure. In the x = 0.3 compound, the relation of TMI_{MI} and TC_{C} shows a critical behavior: They are coupled in the range of ∌\sim0.8-5 GPa and decoupled outside of this range. In the x = 0.35 compound, TMI_{MI} and TC_{C} are coupled in the measured pressure range where a ferromagnetic state is present

    Does 4D transperineal ultrasound have additional value over 2D transperineal ultrasound for diagnosing posterior pelvic floor disorders in women with obstructed defecation syndrome?

    Get PDF
    Objective To establish the diagnostic test accuracy of two‐dimensional (2D) and four‐dimensional (4D) transperineal ultrasound (TPUS) for diagnosis of posterior pelvic floor disorders in women with obstructed defecation syndrome (ODS), in order to assess if 4D ultrasound imaging provides additional value. Methods This was a prospective cohort study of 121 consecutive women with ODS. Symptoms of ODS and pelvic organ prolapse on clinical examination were assessed using validated methods. All women underwent both 2D‐ and 4D‐TPUS. Imaging analysis was performed by two blinded observers. Posterior pelvic floor disorders were dichotomized into presence or absence, according to predefined cut‐off values. In the absence of a reference standard, a composite reference standard was created from a combination of results of evacuation proctography, magnetic resonance imaging and endovaginal ultrasound. Primary outcome measures were diagnostic test characteristics of 2D‐ and 4D‐TPUS for rectocele, enterocele, intussusception and anismus. Secondary outcome measures were interobserver agreement, agreement between the two imaging techniques, and association of severity of ODS symptoms and degree of posterior vaginal wall prolapse with conditions observed on imaging. Results For diagnosis of all four posterior pelvic floor disorders, there was no difference in sensitivity or specificity between 2D‐ and 4D‐TPUS (P = 0.131–1.000). Good agreement between 2D‐ and 4D‐TPUS was found for diagnosis of rectocele (Îș = 0.675) and moderate agreement for diagnoses of enterocele, intussusception and anismus (Îș = 0.465–0.545). There was no difference in rectocele depth measurements between the techniques (19.9 mm for 2D vs 19.0 mm for 4D, P = 0.802). Interobserver agreement was comparable for both techniques, although 2D‐TPUS had excellent interobserver agreement for diagnosis of enterocele and rectocele depth measurements, while this was only moderate and good, respectively, for 4D‐TPUS. Diagnoses of rectocele and enterocele on both 2D‐ and 4D‐TPUS were significantly associated with degree of posterior vaginal wall prolapse on clinical examination (odds ratio (OR) = 1.89–2.72). The conditions observed using either imaging technique were not associated with severity of ODS symptoms (OR = 0.82–1.13). Conclusions There is no evidence of superiority of 4D ultrasound acquisition to dynamic 2D ultrasound acquisition for the diagnosis of posterior pelvic floor disorders. 2D‐ and 4D‐TPUS could be used interchangeably to screen women with symptoms of ODS

    Parent of Origin, Mosaicism, and Recurrence Risk: Probabilistic Modeling Explains the Broken Symmetry of Transmission Genetics

    Get PDF
    Most new mutations are observed to arise in fathers, and increasing paternal age positively correlates with the risk of new variants. Interestingly, new mutations in X-linked recessive disease show elevated familial recurrence rates. In male offspring, these mutations must be inherited from mothers. We previously developed a simulation model to consider parental mosaicism as a source of transmitted mutations. In this paper, we extend and formalize the model to provide analytical results and flexible formulas. The results implicate parent of origin and parental mosaicism as central variables in recurrence risk. Consistent with empirical data, our model predicts that more transmitted mutations arise in fathers and that this tendency increases as fathers age. Notably, the lack of expansion later in the male germline determines relatively lower variance in the proportion of mutants, which decreases with paternal age. Subsequently, observation of a transmitted mutation has less impact on the expected risk for future offspring. Conversely, for the female germline, which arrests after clonal expansion in early development, variance in the mutant proportion is higher, and observation of a transmitted mutation dramatically increases the expected risk of recurrence in another pregnancy. Parental somatic mosaicism considerably elevates risk for both parents. These findings have important implications for genetic counseling and for understanding patterns of recurrence in transmission genetics. We provide a convenient online tool and source code implementing our analytical results. These tools permit varying the underlying parameters that influence recurrence risk and could be useful for analyzing risk in diverse family structures

    Non-linear electrical response in a non-charge-ordered manganite: Pr0.8Ca0.2MnO3

    Full text link
    Up to now, electric field induced non-linear conduction in the Pr(1-x)CaxMnO3 system has been ascribed to a current-induced destabilization of the charge ordered phase. However, for x<0.25, a ferromagnetic insulator state is observed and charge-ordering is absent whatever the temperature. A systematic investigation of the non-linear transport in the ferromagnetic insulator Pr0.8Ca0.2MnO3 shows rather similar results to those obtained in charge ordered systems. However, the experimental features observed in Pr0.8Ca0.2MnO3 are distinct in that the collapse of the CO energy gap can not be invoked as usually done in the other members of the PCMO system. We propose interpretations in which the effectiveness of the DE is restored upon application of electric field.Comment: 6 pages, 5 figure

    Field-Induced Magnetization Steps in Intermetallic Compounds and Manganese Oxides: The Martensitic Scenario

    Full text link
    Field-induced magnetization jumps with similar characteristics are observed at low temperature for the intermetallic germanide Gd5Ge4and the mixed-valent manganite Pr0.6Ca0.4Mn0.96Ga0.04O3. We report that the field location -and even the existence- of these jumps depends critically on the magnetic field sweep rate used to record the data. It is proposed that, for both compounds, the martensitic character of their antiferromagnetic-to-ferromagnetic transitions is at the origin of the magnetization steps.Comment: 4 pages,4 figure

    Signal transducer and activator of transcription-5 mediates neuronal apoptosis induced by inhibition of Rac GTPase activity.

    Get PDF
    In several neuronal cell types, the small GTPase Rac is essential for survival. We have shown previously that the Rho family GTPase inhibitor Clostridium difficile toxin B (ToxB) induces apoptosis in primary rat cerebellar granule neurons (CGNs) principally via inhibition of Rac GTPase function. In the present study, incubation with ToxB activated a proapoptotic Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and a pan-JAK inhibitor protected CGNs from Rac inhibition. STAT1 expression was induced by ToxB; however, CGNs from STAT1 knock-out mice succumbed to ToxB-induced apoptosis as readily as wild-type CGNs. STAT3 displayed enhanced tyrosine phosphorylation following treatment with ToxB, and a reputed inhibitor of STAT3, cucurbitacin (JSI-124), reduced CGN apoptosis. Unexpectedly, JSI-124 failed to block STAT3 phosphorylation, and CGNs were not protected from ToxB by other known STAT3 inhibitors. In contrast, STAT5A tyrosine phosphorylation induced by ToxB was suppressed by JSI-124. In addition, roscovitine similarly inhibited STAT5A phosphorylation and protected CGNs from ToxB-induced apoptosis. Consistent with these results, adenoviral infection with a dominant negative STAT5 mutant, but not wild-type STAT5, significantly decreased ToxB-induced apoptosis of CGNs. Finally, chromatin immunoprecipitation with a STAT5 antibody revealed increased STAT5 binding to the promoter region of prosurvival Bcl-xL. STAT5 was recruited to the Bcl-xL promoter region in a ToxB-dependent manner, and this DNA binding preceded Bcl-xL down-regulation, suggesting transcriptional repression. These data indicate that a novel JAK/STAT5 proapoptotic pathway significantly contributes to neuronal apoptosis induced by the inhibition of Rac GTPase

    Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    Full text link
    Low-energy photoelectron–vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s−1 → 2p−1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO+ ions into O+ + N* or N+ + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission

    Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed

    Full text link
    [EN] Three-dimensional mathematical model was developed for a rectangular TE10n microwave heating cavity system, working at 2.45 GHz. Energy/heat, momentum equations were solved together with Maxwell's electromagnetic field equations using comm. MULTIPHYSICS (R) simulation environment. The dielectric properties, epsilon' and epsilon '', of NaY zeolite (Si/Al = 2.5) were evaluated as a function of temperature. Considering these values, the microwave heating of a porous fixed-bed made of dry NaY zeolite was simulated. Electric field distribution, axial and radial temperature profiles and temperature evolution with time were obtained. The zeolite fixed bed was heated up to 180 degrees C in 5 min, with 30 W power. The fixed-bed temperature evolution under non-steady state conditions showed the same trend as the one observed experimentally with only an average deviation of 10.3%. The model was used to predict microwave heating of other materials improving energy efficiency of the microwave cavity. Furthermore, the developed model was able to predict thermal runaway for zeolites.Financial support from the European Research Council ERC-Advanced Grant HECTOR-267626 is gratefully acknowledged. Hakan Nigar acknowledges financial support from the Spanish Ministry of Education for the FPU grant (Formacion del Profesorado Universitario - FPU12/06864), and also for the academic short stay grant (Estancia Breve - FPU2016) at the Delft University of Technology, Delft, The Netherlands.Nigar, H.; Sturm, GSJ.; García-Baños, B.; Penaranda-Foix, FL.; Catalå Civera, JM.; Mallada, R.; Stankiewicz, A.... (2019). Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Applied Thermal Engineering. 155:226-238. https://doi.org/10.1016/j.applthermaleng.2019.03.117S22623815

    Non-linear electrical response in a charge/orbital ordered Pr⁥0.63\Pr_{0.63}Ca0.37_{0.37}MnO3_3 crystal : the charge density wave analogy

    Full text link
    Non-linear conduction in a charge-ordered manganese oxide Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3 is reported. To interpret such a feature, it is usually proposed that a breakdown of the charge or orbitally ordered state is induced by the current. The system behaves in such a way that the bias current may generate metallic paths giving rise to resistivity drop. One can describe this feature by considering the coexistence of localized and delocalized electron states with independent paths of conduction. This situation is reminiscent of what occurs in charge density wave systems where a similar non-linear conduction is also observed. In the light of recent experimental results suggesting the development of charge density waves in charge and orbitally ordered manganese oxides, a phenomenological model for charge density waves motion is used to describe the non-linear conduction in Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3. In such a framework, the non-linear conduction arises from the motion of the charge density waves condensate which carries a net electrical current.Comment: 13 pages, 6 figure

    Charged-Particle Pseudorapidity Distributions in Au+Au Collisions at sqrt(s_NN)=62.4 GeV

    Full text link
    The charged-particle pseudorapidity density for Au+Au collisions at sqrt(s_NN)=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The mid-rapidity density is found to grow approximately logarithmically between AGS energies and the top RHIC energy. As a function of centrality, there is an approximate factorization of the centrality dependence of the mid-rapidity yields and the overall multiplicity scale. The new results at sqrt(s_NN)=62.4 GeV confirm the previously observed phenomenon of ``extended longitudinal scaling'' in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.Comment: 6 pages, 7 figures, submitted to Phys. Rev. C - Rapid Communication
    • 

    corecore