109 research outputs found

    Transport of magnetic flux from the canopy to the internetwork

    Full text link
    Recent observations have revealed that 8% of linear polarization patches in the internetwork quiet Sun are fully embedded in downflows. These are not easily explained with the typical scenarios for the source of internetwork fields which rely on flux emergence from below. We explore using radiative MHD simulations a scenario where magnetic flux is transported from the magnetic canopy overlying the internetwork into the photosphere by means of downward plumes associated with convective overshoot. We find that if a canopy-like magnetic field is present in the simulation, the transport of flux from the canopy is an important process for seeding the photospheric layers of the internetwork with magnetic field. We propose that this mechanism is relevant for the Sun as well, and it could naturally explain the observed internetwork linear polarization patches entirely embedded in downflows.Comment: Accepted to Ap

    Migration of Ca II H bright points in the internetwork

    Full text link
    The migration of magnetic bright point-like features (MBP) in the lower solar atmosphere reflects the dispersal of magnetic flux as well as the horizontal flows of the atmospheric layer they are embedded in. We analyse trajectories of the proper motion of intrinsically magnetic, isolated internetwork Ca II H MBPs (mean lifetime 461 +- 9 s) to obtain their diffusivity behaviour. We use seeing-free high spatial and temporal resolution image sequences of quiet-Sun, disc-centre observations obtained in the Ca II H 3968 {\AA} passband of the Sunrise Filter Imager (SuFI) onboard the Sunrise balloon-borne solar observatory. Small MBPs in the internetwork are automatically tracked. The trajectory of each MBP is then calculated and described by a diffusion index ({\gamma}) and a diffusion coefficient (D). We further explore the distribution of the diffusion indices with the help of a Monte Carlo simulation. We find {\gamma} = 1.69 +- 0.08 and D = 257 +- 32 km^2/s averaged over all MBPs. Trajectories of most MBPs are classified as super-diffusive, i.e., {\gamma} > 1, with the determined {\gamma} being to our knowledge the largest obtained so far. A direct correlation between D and time-scale ({\tau}) determined from trajectories of all MBPs is also obtained. We discuss a simple scenario to explain the diffusivity of the observed, relatively short-lived MBPs while they migrate within a small area in a supergranule (i.e., an internetwork area). We show that the scatter in the {\gamma} values obtained for individual MBPs is due to their limited lifetimes. The super-diffusive MBPs can be well-described as random walkers (due to granular evolution and intergranular turbu- lence) superposed on a large systematic (background) velocity, caused by granular, mesogranular and supergranular flows.Comment: 10 pages, 7 figures, 3 table

    Solar cycle variation in Sun-as-a-star Ca II 854.2 nm bisectors

    Full text link
    The bisector of the strong chromospheric Ca II 854.2 nm line has an inverse-C shape the cause of which is not yet fully understood. We show that the amplitude of the bisector in Sun-as-a-star observations exhibits a solar cycle variation with smaller amplitudes during highest activity. The line core intensity is lower during solar minima while the part of the bisector most sensitive to the line core shows no systematic change with activity. Our results support the use of Ca II 854.2 nm bisectors in studying the relationship between convection and magnetic fields, not only in the Sun but in other stars as well.Comment: Accepted to Ap

    Spectropolarimetric observations of the Ca II 8498 A and 8542 A lines in the quiet Sun

    Full text link
    The Ca II infrared triplet is one of the few magnetically sensitive chromospheric lines available for ground-based observations. We present spectropolarimetric observations of the 8498 A and 8542 A lines in a quiet Sun region near a decaying active region and compare the results with a simulation of the lines in a high plasma-beta regime. Cluster analysis of Stokes V profile pairs shows that the two lines, despite arguably being formed fairly close, often do not have similar shapes. In the network, the local magnetic topology is more important in determining the shapes of the Stokes V profiles than the phase of the wave, contrary to what our simulations show. We also find that Stokes V asymmetries are very common in the network, and the histograms of the observed amplitude and area asymmetries differ significantly from the simulation. Both the network and internetwork show oscillatory behavior in the Ca II lines. It is stronger in the network, where shocking waves, similar to those in the high-beta simulation, are seen and large self-reversals in the intensity profiles are common.Comment: 23 pages, 17 figures, accepted to ApJ some figures are low-res, for high-res email [email protected]

    STEREO quadrature observations of coronal dimming at the onset of mini-CMEs

    Full text link
    Context: Using unique quadrature observations with the two STEREO spacecraft, we investigate coronal dimmings at the onset of small-scale eruptions. In CMEs they are believed to indicate the opening up of the coronal magnetic fields at the start of the eruption. Aims: It is to determine whether coronal dimming seen in small-scale eruptions starts before or after chromospheric plasma ejection. Methods: One STEREO spacecraft obtained high cadence, 75 s, images in the He II 304A channel, and the other simultaneous images in the Fe IX/FeX 171A channel. We concentrate on two well-positioned chromospheric eruptions that occurred at disk center in the 171A images, and on the limb in 304A. One was in the quiet Sun and the other was in an equatorial coronal hole. We compare the timing of chromospheric eruption seen in the 304A limb images with the brightenings and dimmings seen on disk in the 171A images. Further we use off-limb images of the low frequency 171A power to infer the coronal structure near the eruptions. Results: In both the quiet Sun and the coronal hole eruption, on disk 171A dimming was seen before the chromospheric eruption, and in both cases it extends beyond the site of the chromospheric eruption. The quiet Sun eruption occurred on the outer edge of the enclosing magnetic field of a prominence and may be related to a small disruption of the prominence just before the 171A dimming. Conclusions: These small-scale chromospheric eruptions started with a dimming in coronal emission just like their larger counterparts. We therefore suggest that a fundamental step in triggering them was the removal of overlying coronal field.Comment: 4 pages, 8 figures. To appear A&A Letters. Movies accompanying this Letter are at http://www.mps.mpg.de/data/outgoing/innes/dims

    Expansion of magnetic flux concentrations: a comparison of Hinode SOT d ata and models

    Full text link
    Context: The expansion of network magnetic fields with height is a fundamental property of flux tube models. A rapid expansion is required to form a magnetic canopy. Aims: We characterize the observed expansion properties of magnetic network elements and compare them with the thin flux tube and sheet approximations, as well as with magnetoconvection simulations. Methods: We used data from the Hinode SOT NFI NaD1 channel and spectropolarimeter to study the appearance of magnetic flux concentrations seen in circular polarization as a function of position on the solar disk. We compared the observations with synthetic observables from models based on the thin flux tube approximation and magnetoconvection simulations with two different upper boundary conditions for the magnetic field (potential and vertical). Results: The observed circular polarization signal of magnetic flux concentrations changes from unipolar at disk center to bipolar near the limb, which implies an expanding magnetic field. The observed expansion agrees with expansion properties derived from the thin flux sheet and tube approximations. Magnetoconvection simulations with a potential field as the upper boundary condition for the magnetic field also produce bipolar features near the limb while a simulation with a vertical field boundary condition does not. Conclusions: The near-limb apparent bipolar magnetic features seen in high-resolution Hinode observations can be interpreted using a simple flux sheet or tube model. This lends further support to the idea that magnetic features with vastly varying sizes have similar relative expansion rates. The numerical simulations presented here are less useful in interpreting the expansion since the diagnostics we are interested in are strongly influenced by the choice of the upper boundary condition for the magnetic field in the purely photospheric simulations.Comment: accepted for publication in A&

    Inertial Range Scaling, Karman-Howarth Theorem and Intermittency for Forced and Decaying Lagrangian Averaged MHD in 2D

    Full text link
    We present an extension of the Karman-Howarth theorem to the Lagrangian averaged magnetohydrodynamic (LAMHD-alpha) equations. The scaling laws resulting as a corollary of this theorem are studied in numerical simulations, as well as the scaling of the longitudinal structure function exponents indicative of intermittency. Numerical simulations for a magnetic Prandtl number equal to unity are presented both for freely decaying and for forced two dimensional MHD turbulence, solving directly the MHD equations, and employing the LAMHD-alpha equations at 1/2 and 1/4 resolution. Linear scaling of the third-order structure function with length is observed. The LAMHD-alpha equations also capture the anomalous scaling of the longitudinal structure function exponents up to order 8.Comment: 34 pages, 7 figures author institution addresses added magnetic Prandtl number stated clearl
    corecore