87 research outputs found

    100 years on: The impact of the discovery of insulin on clinical outcomes

    Get PDF
    Throughout history, up to the early part of the 20th century, diabetes has been a devastating disorder, particularly when diagnosed in childhood when it was usually fatal. Consequently, the successful pancreatic extraction of insulin in 1921 was a miraculous, life-changing advance. In this review, the truly transformative effect that insulin has had on the lives of people with type 1 diabetes and on those with type 2 diabetes who are also dependent on insulin is described, from the time of its first successful use to the present day. We have highlighted in turn how each of the many facets of improvements over the last century, from advancements in the properties of insulin and its formulations to the evolution of different methods of delivery, have led to continued improvement in clinical outcomes, through the use of illustrative stories from history and from our own clinical experiences. This review concludes with a brief look at the current challenges and where the next century of technological innovation in insulin therapy may take us

    The relationship between HbA1c and hypoglycaemia in patients with diabetes treated with insulin degludec versus insulin glargine 100 units/mL

    Get PDF
    Aim Treat‐to‐target, randomized controlled trials have confirmed lower rates of hypoglycaemia at equivalent glycaemic control with insulin degludec (degludec) versus insulin glargine 100 units/mL (glargine U100) in patients with type 1 (T1D) or type 2 diabetes (T2D). Treat‐to‐target trials are designed to enable comparisons of safety and tolerability at a similar HbA1c level. In this post hoc analysis of the SWITCH 1 and 2 trials, we utilised a patient‐level modelling approach to compare how glycaemic control might differ between basal insulins at a similar rate of hypoglycaemia. Materials and Methods Data for HbA1c and symptomatic hypoglycaemia from the SWITCH 1 and SWITCH 2 trials were analyzed separately for patients with type 1 diabetes and type 2 diabetes, respectively. The association between the individual patient‐level risk of hypoglycaemia and HbA1c was investigated using a Poisson regression model and used to estimate potential differences in glycaemic control with degludec versus glargine U100, at the same rate of hypoglycaemia. Results Improvements in glycaemic control increased the incidence of hypoglycaemia with both basal insulins across diabetes types. Our analysis suggests that patients could achieve a mean HbA1c reduction of 0.70 [0.05; 2.20]95% CI (for type 1 diabetes) or 0.96 [0.39; 1.99]95% CI (for type 2 diabetes) percentage points (8 [1; 24]95% CI or 10 [4; 22]95% CI mmol/mol, respectively) further with degludec than with glargine U100 before incurring an equivalent risk of hypoglycaemia. Conclusion Our findings suggest that patients in clinical practice may be able to achieve lower glycaemia targets with degludec versus glargine U100, before incurring an equivalent risk of hypoglycaemia

    Risk of hypoglycaemia with insulin degludec versus insulin glargine U300 in insulin-treated patients with type 2 diabetes : the randomised, head-to-head CONCLUDE trial

    Get PDF
    Aims/hypothesis A head-to-head randomised trial was conducted to evaluate hypoglycaemia safety with insulin degludec 200 U/ml (degludec U200) and insulin glargine 300 U/ml (glargine U300) in individuals with type 2 diabetes treated with basal insulin. Methods This randomised (1:1), open-label, treat-to-target, multinational trial included individuals with type 2 diabetes, aged ≥18 years with HbA1c ≤80 mmol/mol (9.5%) and BMI ≤45 kg/m2. Participants were previously treated with basal insulin with or without oral glucose-lowering drugs (excluding insulin secretagogues) and had to fulfil at least one predefined criterion for hypoglycaemia risk. Both degludec U200 and glargine U300 were similarly titrated to a fasting blood glucose target of 4.0–5.0 mmol/l. Endpoints were assessed during a 36 week maintenance period and a total treatment period up to 88 weeks. There were three hypoglycaemia endpoints: (1) overall symptomatic hypoglycaemia (either severe, an event requiring third-party assistance, or confirmed by blood glucose [<3.1 mmol/l] with symptoms); (2) nocturnal symptomatic hypoglycaemia (severe or confirmed by blood glucose with symptoms, between 00:01 and 05:59 h); and (3) severe hypoglycaemia. The primary endpoint was the number of overall symptomatic hypoglycaemic events in the maintenance period. Secondary hypoglycaemia endpoints included the number of nocturnal symptomatic events and number of severe hypoglycaemic events during the maintenance period. Results Of the 1609 randomised participants, 733 of 805 (91.1%) in the degludec U200 arm and 734 of 804 (91.3%) in the glargine U300 arm completed the trial (87.3% and 87.8% completed on treatment, respectively). Baseline characteristics were comparable between the two treatment arms. For the primary endpoint, the rate of overall symptomatic hypoglycaemia was not significantly lower with degludec U200 vs glargine U300 (rate ratio [RR] 0.88 [95% CI 0.73, 1.06]). As there was no significant difference between treatments for the primary endpoint, the confirmatory testing procedure for superiority was stopped. The pre-specified confirmatory secondary hypoglycaemia endpoints were analysed using pre-specified statistical models but were now considered exploratory. These endpoints showed a lower rate of nocturnal symptomatic hypoglycaemia (RR 0.63 [95% CI 0.48, 0.84]) and severe hypoglycaemia (RR 0.20 [95% CI 0.07, 0.57]) with degludec U200 vs glargine U300. Conclusions/interpretation There was no significant difference in the rate of overall symptomatic hypoglycaemia with degludec U200 vs glargine U300 in the maintenance period. The rates of nocturnal symptomatic and severe hypoglycaemia were nominally significantly lower with degludec U200 during the maintenance period compared with glargine U300

    Predictors of glycemic control among patients with Type 2 diabetes: A longitudinal study

    Get PDF
    BACKGROUND: Diabetes is the sixth leading cause of death and results in significant morbidity. The purpose of this study is to determine what demographic, health status, treatment, access/quality of care, and behavioral factors are associated with poor glycemic control in a Type 2 diabetic, low-income, minority, San Diego population. METHODS: Longitudinal observational data was collected on patients with Type 2 diabetes from Project Dulce, a program in San Diego County designed to care for an underserved diabetic population. The study sample included 573 patients with a racial/ethnic mix of 53% Hispanic, 7% black, 18% Asian, 20% white, and 2% other. We utilized mixed effects models to determine the factors associated with poor glycemic control using hemoglobin A1C (A1C) as the outcome of interest. A multi-step model building process was used resulting in a final parsimonious model with main effects and interaction terms. RESULTS: Patients had a mean age of 55 years, 69% were female, the mean duration of diabetes was 7.1 years, 31% were treated with insulin, and 57% were obese. American Diabetes Association (ADA) recommendations for blood pressure and total cholesterol were met by 71% and 68%, respectively. Results of the mixed effects model showed that patients who were uninsured, had diabetes for a longer period of time, used insulin or multiple oral agents, or had high cholesterol had higher A1C values over time indicating poorer glycemic control. The younger subjects also had poorer control. CONCLUSION: This study provides factors that predict glycemic control in a specific low-income, multiethnic, Type 2 diabetic population. With this information, subgroups with high risk of disease morbidity were identified. Barriers that prevent these patients from meeting their goals must be explored to improve health outcomes

    A 24-Week, Randomized, Treat-to-Target Trial Comparing Initiation of Insulin Glargine Once-Daily With Insulin Detemir Twice-Daily in Patients With Type 2 Diabetes Inadequately Controlled on Oral Glucose-Lowering Drugs

    Get PDF
    OBJECTIVE - To determine whether glargine is noninferior to detemir regarding the percentage of patients reaching A1C <7% without symptomatic hypoglycemia <= 3.1 mmol/l. RESEARCH DESIGN AND METHODS - In this 24-week trial, 973 insulin-naive type 2 diabetic patients on stable oral glucose-lowering drugs with A1CS. 7.0-10.5% were randomized to glargine once daily or detemir twice daily. Insulin doses were systematically titrated. RESULTS - 27.5 and 25.6% of patients reached the primary outcome with glargine and detemir, respectively, demonstrating the noninferiority of glargine. Improvements in A1C were -1.46 +/- 1.09% for glargine and -1.54 +/- 1.11% for detemir (P = 0.149), with similar proportions of patients achieving A1C <7% (P = 0.254) but more detemir-treated patients reaching A1C <6.5% (P = 0.017). Hypoglycemia risk was similar. Weight gain was higher for glargine (difference: 0.77 kg, P <0.001). Glargine doses were lower than detemir doses: 43.5 +/- 129.0 vs. 76.5 +/- 50.5 units/day (P <0.001). CONCLUSIONS - In insulin-naive type 2 diabetic patients, glargine reached similar control as detemir, with more weight gain, but required significantly lower dose

    The effectiveness of peer health coaching in improving glycemic control among low-income patients with diabetes: protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although self-management support improves diabetes outcomes, it is not consistently provided in health care settings strained for time and resources. One proposed solution to personnel and funding shortages is to utilize peer coaches, patients trained to provide diabetes education and support to other patients. Coaches share similar experiences about living with diabetes and are able to reach patients within and beyond the health care setting. Given the limited body of evidence that demonstrates peer coaching significantly improves chronic disease care, this present study examines the impact of peer coaching delivered in a primary care setting on diabetes outcomes.</p> <p>Methods/Design</p> <p>The aim of this multicenter, randomized control trial is to evaluate the effectiveness of utilizing peer coaches to improve clinical outcomes and self-management skills in low-income patients with poorly controlled diabetes. A total of 400 patients from six primary health centers based in San Francisco that serve primarily low-income populations will be randomized to receive peer coaching (n = 200) or usual care (n = 200) over 6 months. Patients in the peer coach group receive coaching from patients with diabetes who are trained and mentored as peer coaches. The primary outcome is change in HbA1c. Secondary outcomes include change in: systolic blood pressure, body mass index (BMI), LDL cholesterol, diabetes self-care activities, medication adherence, diabetes-related quality of life, diabetes self-efficacy, and depression. Clinical values (HbA1c, LDL cholesterol and blood pressure) and self-reported diabetes self-efficacy and self-care activities are measured at baseline and after 6 months for patients and coaches. Peer coaches are also assessed at 12 months.</p> <p>Discussion</p> <p>Patients with diabetes, who are trained as peer health coaches, are uniquely poised to provide diabetes self management support and education to patients. This study is designed to investigate the impact of peer health coaching in patients with poorly controlled diabetes. Additionally, we will assess disease outcomes in patients with well controlled diabetes who are trained and work as peer health coaches.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01040806">NCT01040806</a></p

    Cost-Effectiveness Analysis of Insulin Detemir Compared to Neutral Protamine Hagedorn (NPH) in Patients with Type 1 and Type 2 Diabetes Mellitus in Spain

    Get PDF
    Introduction: An Excel® (Microsoft Corporation) model was adapted to estimate the short-term (1-year) cost effectiveness of insulin detemir (IDet) versus neutral protamine Hagedorn (NPH) insulin in patients initiating insulin treatment with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) in Spain. Methods: Clinical benefits included the non-severe hypoglycemia rate for T1DM and T2DM, and weight change for T2DM. Three scenarios were included with different hypoglycemia rates estimated on the basis of clinical trials and observational studies. Costs, estimated from perspective of the Spanish Public Healthcare System (Euros 2014), included insulin treatment and non-severe hypoglycemia management costs. Non-severe hypoglycemia, defined as a self-managed event, implied the use of extra glucose testing strips and a general practitioner visit during the week following the event for 25% of patients. An average disutility value was associated to non-severe hypoglycemia events and, for T2DM, to one body mass index unit gain to calculate quality-adjusted life years (QALYs). Results: For the three scenarios a range of 0.025–0.076 QALYs for T1DM and 0.014–0.051 QALYs for T2DM were gained for IDet versus NPH due to non-severe hypoglycemia and weight gain avoidance, in return of an incremental cost of €145–192 for T1DM and €128–206 for T2DM. This resulted in the IDet versus NPH incremental cost-effectiveness ratio (ICER) ranging between €1910/QALY and €7682/QALY for T1DM and €2522/QALY and €15,009/QALY for T2DM. Conclusion: IDet was a cost-effective alternative to NPH insulin in the first year of treatment of patients with T1DM and patients with T2DM in Spain, with ICERs under the threshold value commonly accepted in Spain (€30,000/QALY)

    Glycemic control and long-acting insulin analog utilization in patients with type 2 diabetes

    Get PDF
    Introduction: The objective was to compare glycemic control, insulin utilization, and body weight in patients with type 2 diabetes (T2D) initiated on insulin detemir (IDet) or insulin glargine (IGlar) in a real-life setting in the Netherlands. Methods: Insulin-naïve patients with T2D, starting treatment with IDet or IGlar between January 1, 2004 and June 30, 2008, were selected from the PHARMO data network. Glycemic control (hemoglobin A1c [HbA1c]), target rates (HbA1c <7%), daily insulin dose, and weight gain were analyzed comparing IDet and IGlar for patients with available HbA1c levels both at baseline and at 1-year follow-up. Analysis of all eligible patients (AEP) and a subgroup of patients without treatment changes (WOTC) in the follow-up period were adjusted for patient characteristics, propensity scores, and baseline HbA1c. Results: A total of 127 IDet users and 292 IGlar users were included in the WOTC analyses. The mean HbA1c dropped from 8.4%-8.6% at baseline to 7.4% after 1 year. Patients at HbA1c goal increased from 9% at baseline to 32% for IDet and 11% to 35% for IGlar, which was not significantly different (OR 0.75, 95% CI 0.46, 1.24). Weight gain (n=90) was less among IDet users (+0.4kg) than among IGlar users (+1.1kg), albeit not significant. The AEP analysis (252 IDet
    corecore