147 research outputs found

    Effect of the Mechanism Transfer Function on the Positioning Law

    Get PDF
    Parametric synthesis of mechanical system consisting of actuator, transfer mechanism and control device is considered. Planar and spatial mechanisms with one degree of freedom can be included in the system. Mechanism structure and the type of the actuator are considered to be given preliminary.     Keywords: synthesis, mechanism, drive, contro

    A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Full text link
    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3_{3} crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~μ\muA.Comment: 20 pages, 22 figures, revised version of arXiv:1601.00251v1, submitted to NIM

    The Polarized H and D Atomic Beam Source for ANKE at COSY-J\"ulich

    Get PDF
    A polarized atomic beam source was developed for the polarized internal storage-cell gas target at the magnet spectrometer ANKE of COSY-J\"ulich. The intensities of the beams injected into the storage cell, measured with a compression tube, are 7.510167.5\cdot 10^{16} hydrogen atoms/s (two hyperfine states) and 3.910163.9\cdot 10^{16} deuterium atoms/s (three hyperfine states). For the hydrogen beam the achieved vector polarizations are pz±0.92p_{\rm z}\approx\pm0.92. For the deuterium beam, the obtained combinations of vector and tensor (pzzp_{\rm zz}) polarizations are pz±0.90p_{\rm z}\approx\pm 0.90 (with a constant pzz+0.86p_{\rm zz}\approx +0.86), and pzz=+0.90p_{\rm zz}=+0.90 or pzz=1.71p_{\rm zz}=-1.71 (both with vanishing pzp_{\rm z}). The paper includes a detailed technical description of the apparatus and of the investigations performed during the development.Comment: 18 pages, 26 figures, 4 table

    A Pair Polarimeter for Linearly Polarized High Energy Photons

    Get PDF
    A high quality beam of linearly polarized photons of several GeV will become available with the coherent bremsstrahlung technique at JLab. We have developed a polarimeter which requires about two meters of the beam line, has an analyzing power of 20% and an efficiency of 0.02%. The layout and first results of a polarimeter test on the laser back-scattering photon beam at SPring-8/LEPS are presented

    Current opportunities and prospectives of immunotropic therapy in chronic generalized periodontitis

    Get PDF
    Impairment of immunological reactivity in inflammatory periodontal diseases is well proven. To perform immunomodulatory treatment in domestic dental practice, various medications are used, including natural, chemically modified, recombinant, genetically engineered and synthetic substances, which differ in their effects upon innate and adaptive immune systems. Complex preparations of natural cytokines as well as genetically engineered preparations of IL-1, IL-2, growth factors, IFNα, IFNβ, IFNγ are applied in clinical settings. Clinical implementation of interferon and interferon inducers in combined therapy of generalized periodontitis is shown to increase resistance to viral components of the oral microbiota. Growth factors (platelet growth factor, fibroblast growth factor, endothelial growth factor, etc.) are successfully used for tissue regeneration in periodontics and maxillofacial surgery. Experimental studies have shown that local administration of toll-like receptor-9 and CD40 ligand may reduce periodontal ligature inflammation and bone loss in mice by inducing B-cell proliferation and increasing IL-10 mRNA expression. Promising results in development of new biologically active drugs are obtained with nanotechnology approaches, i.e., production of composite materials of metal nanoparticles with polymers, growth factors, and local application of these products. General limitations of all these growth factors include extremely short periods of biological activity, and adjusted duration of local effective concentrations. Therefore, it is important to develop a drug delivery system using appropriate scaffolding elements thus allowing local effects of the drug for a certain period of time. In experimental models, alginate hydrogels performed well upon local delivery of granulocyte-macrophage colony-stimulating factor and stromal lymphopoietin of the thymus. A new immunomodulatory strategy for alveolar bone regeneration targets macrophages. A biologically functionalized injectable microsphere of heparin-modified gelatin nanofibers that mimic the architecture of the natural bone extracellular matrix, and provide an osteoconductive microenvironment for bone cells includes IL-4, which has heparin-binding domains. These medications represent a component of a comprehensive treatment schedule, and should be evaluated for immune status before and after therapy. Thus, recent advances in studies of innate and acquired immune responses in inflammatory diseases and, in particular, in periodontal disorders, allows us to develop new approaches and methods of treatment in order to improve efficiency of complex therapy in the inflammatory periodontal diseases

    24 segment high field permanent sextupole magnets

    Get PDF
    We report on the design, construction, and magnetic field measurements of a system of high field sextupole magnets made from NdFeB compounds. The magnets are utilized as a focusing system for neutral hydrogen (or deuterium) atoms in a polarized atomic beam source based on Stern-Gerlach spin separation. Each magnet consists of 24 segments of permanently magnetized material differing in remanence and coercivity to reduce demagnetization. According to quadratic extrapolation to the pole tip the magnetic flux density reaches values of up to B-0=1.69 T. Three-dimensional field calculations using the MAFIA code were carried out to optimize the magnet performance and to avoid demagnetization by selecting appropriate materials for the individual segments. Measurements of the radial, azimuthal, and longitudinal magnetic flux density distributions were carried out by means of a small Hall probe (100x200x15 mu m(3)). The measurements with the small probe permitted to extract experimentally higher order multipole components very close (similar to 100 mu m) to the inner surface. Experimental values obtained are compared to predictions based on MAFIA calculations and on the Halbach formalism. (C) 2000 American Institute of Physics. [S0034-6748(00)05309-0]

    Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

    Get PDF
    We report on the highest precision yet achieved in the measurement of the polarization of a low energy, O\mathcal{O}(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the 180 μ180~\muA, 1.161.16~GeV electron beam was measured with a statistical precision of <<~1\% per hour and a systematic uncertainty of 0.59\%. This exceeds the level of precision required by the \qweak experiment, a measurement of the vector weak charge of the proton. Proposed future low-energy experiments require polarization uncertainty <<~0.4\%, and this result represents an important demonstration of that possibility. This measurement is also the first use of diamond detectors for particle tracking in an experiment.Comment: 9 pages, 7 figures, published in PR

    Gas dynamics in high-luminosity polarized He-3 targets using diffusion and convection

    Full text link
    The dynamics of the movement of gas is discussed for two-chambered polarized He-3 target cells of the sort that have been used successfully for many electron scattering experiments. A detailed analysis is presented showing that diffusion is a limiting factor in target performance, particularly as these targets are run at increasingly high luminosities. Measurements are presented on a new prototype polarized He-3 target cell in which the movement of gas is due largely to convection instead of diffusion. NMR tagging techniques have been used to visualize the gas flow, showing velocities along a cylindrically-shaped target of between 5-80 cm/min. The new target design addresses one of the principle obstacles to running polarized He-3 targets at substantially higher luminosities while simultaneously providing new flexibility in target geometry.Comment: First revision: 14 pages, 9 figures, submitted to Phys. Rev. C. We have shortened our discussion of the limitations inherent in various historical He-3 targets, and we have added a discussion exploring the optimal performance that can be expected from a suitably modified target based on diffusion-based mixing. A reference (Jones et. al.) was added. The results we present have not change

    Deeply Virtual Compton Scattering off the neutron

    Full text link
    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e,eγ)X({\vec e},e'\gamma)X cross section measured at Q2Q^2=1.9 GeV2^2 and xBx_B=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to EqE_q, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.Comment: Published in Phys. Rev. Let

    Compton Scattering Cross Section on the Proton at High Momentum Transfer

    Get PDF
    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.Comment: 5 pages, 5 figure
    corecore