15,775 research outputs found

    The use of FRPs in seismic repair and retrofit: experimental verification

    Get PDF
    The application of FRPs in the seismic repair and retrofit of structures is addressed. The results from a few tests on full-scale structures, repaired and/or retrofitted with composites, performed at the ELSA laboratory are presented and discussed

    Feasibility experiments on time-resolved fluorosensing applied to oil slicks

    Get PDF
    The introduction of time resolved observations can provide a very penetrating tool in the practice of laser fluorosensing. The investigations have demonstrated a relevance of multispectral, time resolved analysis for oil fingerprinting. By comparative studies on a variety of crude oils and their most significant fractions, it was found that the process of time decay in a composite oil is characterized by a few steps, which are associated with specific components in the medium light range. The average decay times of these pure fractions are markedly differentiated as to absolute values and spectral spread; as a consequence, the corresponding parameters in the resultant crude are quite sensitive to the particular mixture of these components. Measurements of the time response give then a finer discrimination between oil classes, depending on the relative content of certain fractions. Experiments were pursued with an improved fluorosensor facility, in order to test the application of time resolved fluorosensing to remote samples on water

    Nanofriction behavior of cluster-assembled carbon films

    Get PDF
    We have characterized the frictional properties of nanostructured (ns) carbon films grown by Supersonic Cluster Beam Deposition (SCBD) via an Atomic Force-Friction Force Microscope (AFM-FFM). The experimental data are discussed on the basis of a modified Amonton's law for friction, stating a linear dependence of friction on load plus an adhesive offset accounting for a finite friction force in the limit of null total applied load. Molecular Dynamics simulations of the interaction of the AFM tip with the nanostructured carbon confirm the validity of the friction model used for this system. Experimental results show that the friction coefficient is not influenced by the nanostructure of the films nor by the relative humidity. On the other hand the adhesion coefficient depends on these parameters.Comment: 22 pages, 6 figures, RevTex

    A novel CMB polarization likelihood package for large angular scales built from combined WMAP and Planck LFI legacy maps

    Get PDF
    We present a CMB large-scale polarization dataset obtained by combining WMAP Ka, Q and V with Planck 70 GHz maps. We employ the legacy frequency maps released by the WMAP and Planck collaborations and perform our own Galactic foreground mitigation technique, which relies on Planck 353 GHz for polarized dust and on Planck 30 GHz and WMAP K for polarized synchrotron. We derive a single, optimally-noise-weighted, low-residual-foreground map and the accompanying noise covariance matrix. These are shown, through χ2\chi^2 analysis, to be robust over an ample collection of Galactic masks. We use this dataset, along with the Planck legacy Commander temperature solution, to build a pixel-based low-resolution CMB likelihood package, whose robustness we test extensively with the aid of simulations, finding excellent consistency. Using this likelihood package alone, we constrain the optical depth to reionazation τ=0.069−0.012+0.011\tau=0.069^{+0.011}_{-0.012} at 68%68\% C.L., on 54\% of the sky. Adding the Planck high-ℓ\ell temperature and polarization legacy likelihood, the Planck lensing likelihood and BAO observations we find τ=0.0714−0.0096+0.0087\tau=0.0714_{-0.0096}^{+0.0087} in a full Λ\LambdaCDM exploration. The latter bounds are slightly less constraining than those obtained employing \Planck\ HFI CMB data for large angle polarization, that only include EE correlations. Our bounds are based on a largely independent dataset that does include also TE correlations. They are generally well compatible with Planck HFI preferring slightly higher values of τ\tau. We make the low-resolution Planck and WMAP joint dataset publicly available along with the accompanying likelihood code.Comment: The WMAP+LFI likelihood module is available on \http://www.fe.infn.it/u/pagano/low_ell_datasets/wmap_lfi_legacy

    Inhibition of in-stent stenosis by oral administration of bindarit in porcine coronary arteries

    Get PDF
    <p><b>Objective:</b> We have previously demonstrated that bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs), is effective in reducing neointimal formation in rodent models of vascular injury by reducing smooth muscle cell proliferation and migration and neointimal macrophage content, effects associated with the inhibition of MCP-1/CCL2 production. The aim of the current study was to evaluate the efficacy of bindarit on in-stent stenosis in the preclinical porcine coronary stent model.</p> <p><b>Methods and Results:</b> One or 2 bare metal stents (Multi-Link Vision, 3.5 mm) were deployed (1:1.2 oversize ratio) in the coronary arteries of 42 pigs (20 bindarit versus 22 controls). Bindarit (50 mg/kg per day) was administered orally from 2 days before stenting until the time of euthanasia at 7 and 28 days. Bindarit caused a significant reduction in neointimal area (39.4%, P<0.001, n=9 group), neointimal thickness (51%, P<0.001), stenosis area (37%, P<0.001), and inflammatory score (40%, P<0.001) compared with control animals, whereas there was no significant difference in the injury score between the 2 groups. Moreover, treatment with bindarit significantly reduced the number of proliferating cells (by 45%, P<0.05; n=6 group) and monocyte/macrophage content (by 55%, P<0.01; n=5–6 group) in stented arteries at day 7 and 28, respectively. These effects were associated with a significant (P<0.05) reduction of MCP-1 plasma levels at day 28. In vitro data showed that bindarit (10–300 micromol/L) reduced tumor necrosis factor-alpha (50 ng/mL)–induced pig coronary artery smooth muscle cell proliferation and inhibited MCP-1 production.</p> <p><b>Conclusion:</b> Our results show the efficacy of bindarit in the prevention of porcine in-stent stenosis and support further investigation for clinical application of this compound.</p&gt

    Interplay between bending and stretching in carbon nanoribbons

    Full text link
    We investigate the bending properties of carbon nanoribbons by combining continuum elasticity theory and tight-binding atomistic simulations. First, we develop a complete analysis of a given bended configuration through continuum mechanics. Then, we provide by tight-binding calculations the value of the bending rigidity in good agreement with recent literature. We discuss the emergence of a stretching field induced by the full atomic-scale relaxation of the nanoribbon architecture. We further prove that such an in-plane strain field can be decomposed into a first contribution due to the actual bending of the sheet and a second one due to edge effects.Comment: 5 pages, 6 figure
    • 

    corecore