2,992 research outputs found

    Discovery of Very High Energy gamma - ray emission from the extreme BL Lac object H2356-309 with H.E.S.S

    Get PDF
    The understanding of acceleration mechanisms in active galactic nuclei (AGN) jets and the measurement of the extragalactic-background-light (EBL) density are closely linked and require the detection of a large sample of very-high-energy (VHE) emitting extragalactic objects at varying redshifts. We report here on the discovery with the H.E.S.S. (High Energy Stereoscopic System) atmospheric-Cherenkov telescopes of the VHE Gamma-ray emission from H2356 - 309, an extreme BL Lac object located at a redshift of 0.165. The observations of this object, which was previously proposed as a southern-hemisphere VHE candidate source, were performed between June and December 2004. The total exposure is 38.9 hours live time, after data quality selection, which yields the detection of a signal at the level of 9.0σ\sigma (standard deviations) .Comment: To appear on proceeding of 29th International Cosmic Ray Conference (ICRC 2005

    Luxation obturatrice de la hanche: un traumatisme rare en pratique sportive

    Get PDF
    Les luxations antérieures traumatiques de la hanche sans fracture du cotyle ou de la tête fémorale sont rares. Elles sont souvent secondaires à des accidents de haute énergie cinétique. La prise en charge thérapeutique nécessite un chirurgien vigilant et prévenu du risque de complications. Nous rapportons le cas d'une luxation obturatrice (antéro-inférieure) chez un jeune de 18 ans pratiquant le rolle

    Results of the Search for Strange Quark Matter and Q-balls with the SLIM Experiment

    Full text link
    The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive to nuclearites and Q-balls, which could be present in the cosmic radiation as possible Dark Matter components. It was sensitive also to strangelets, i.e. small lumps of Strange Quark Matter predicted at such altitudes by various phenomenological models. The analysis of 427 m^2 of Nuclear Track Detectors exposed for 4.22 years showed no candidate event. New upper limits on the flux of downgoing nuclearites and Q-balls at the 90% C.L. were established. The null result also restricts models for strangelets propagation through the Earth atmosphere.Comment: 14 pages, 11 EPS figure

    The Outer Tracker Detector of the HERA-B Experiment Part I: Detector

    Full text link
    The HERA-B Outer Tracker is a large system of planar drift chambers with about 113000 read-out channels. Its inner part has been designed to be exposed to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions similar to those expected for future hadron collider experiments. 13 superlayers, each consisting of two individual chambers, have been assembled and installed in the experiment. The stereo layers inside each chamber are composed of honeycomb drift tube modules with 5 and 10 mm diameter cells. Chamber aging is prevented by coating the cathode foils with thin layers of copper and gold, together with a proper drift gas choice. Longitudinal wire segmentation is used to limit the occupancy in the most irradiated detector regions to about 20 %. The production of 978 modules was distributed among six different laboratories and took 15 months. For all materials in the fiducial region of the detector good compromises of stability versus thickness were found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all chambers. The successful operation of the HERA-B Outer Tracker shows that a large tracker can be efficiently built and safely operated under huge radiation load at a hadron collider.Comment: 28 pages, 14 figure

    Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B

    Full text link
    The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas, production materials) have been developed and validated for use in harsh radiation environments. In the test program various aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed and cures by tuning of operation parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001, Hamburg, German

    First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula

    Get PDF
    The Vela supernova remnant (SNR) is a complex region containing a number of sources of non-thermal radiation. The inner section of this SNR, within 2 degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from an extended region to the south of the pulsar, within an integration region of radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36' J2000.0). The excess coincides with a region of hard X-ray emission seen by the ROSAT and ASCA satellites. The observed energy spectrum of the source between 550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45 +/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/- 2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17 (stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear measurement of a peak in the spectral energy distribution from a VHE gamma-ray source, likely related to inverse Compton emission. A fit of an Inverse Compton model to the H.E.S.S. spectral energy distribution gives a total energy in non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a distance of 290 parsec to the pulsar. The best fit electron power law index is 2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysics letter

    A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7

    Full text link
    We report on a possible association of the recently discovered very high-energy γ\gamma-ray source HESS J1825--137 with the pulsar wind nebula (commonly referred to as G 18.0--0.7) of the 2.1×1042.1\times 10^{4} year old Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a significance of 8.1 σ\sigma in the Galactic Plane survey conducted with the H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula extending to the south of the pulsar. We argue that the observed morphology and TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be associated: the lifetime of TeV emitting electrons is expected to be longer compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in electrons from earlier epochs (when the spin-down power was larger) contributing to the present TeV flux. These electrons are expected to be synchrotron cooled, which explains the observed photon index of 2.4\sim 2.4, and the longer lifetime of TeV emitting electrons naturally explains why the TeV nebula is larger than the X-ray size. Finally, supernova remnant expansion into an inhomogeneous medium is expected to create reverse shocks interacting at different times with the pulsar wind nebula, resulting in the offset X-ray and TeV γ\gamma-ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter

    Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions

    Full text link
    The HERA-B collaboration has studied the production of charmonium and open charm states in collisions of 920 GeV protons with wire targets of different materials. The acceptance of the HERA-B spectrometer covers negative values of xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8 GeV/c. The studies presented in this paper include J/psi differential distributions and the suppression of J/psi production in nuclear media. Furthermore, production cross sections and cross section ratios for open charm mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04), Chicago, IL, June 27 - July 3, 200
    corecore