3,889 research outputs found
Theory of condensation of indirect excitons in a trap
We present theoretical studies of condensation of indirect excitons in a
trap. Our model quantifies the effect of screening of the trap potential by
indirect excitons on exciton condensation. The theoretical studies are applied
to a system of indirect excitons in a GaAs/AlGaAs coupled quantum well
structure in a diamond-shaped electrostatic trap where exciton condensation was
studied in earlier experiments. The estimated condensation temperature of the
indirect excitons in the trap reaches hundreds of milliKelvin
Vortex soliton tori with multiple nested phase singularities in dissipative media
We show the existence of stable two- and three-dimensional vortex solitons
carrying multiple, spatially separated, single-charge topological dislocations
nested around a vortex-ring core. Such new nonlinear states are supported by
elliptical gain landscapes in focusing nonlinear media with two-photon
absorption. The separation between the phase dislocations is dictated mostly by
the geometry of gain landscape and it only slightly changes upon variation of
the gain or absorption strength.Comment: 17 pages, 5 figures, to appear in Physical Review
Compact jets as probes for sub-parsec scale regions in AGN
Compact relativistic jets in active galactic nuclei offer an effective tool
for investigating the physics of nuclear regions in galaxies. The emission
properties, dynamics, and evolution of jets in AGN are closely connected to the
characteristics of the central supermassive black hole, accretion disk and
broad-line region in active galaxies. Recent results from studies of the
nuclear regions in several active galaxies with prominent outflows are reviewed
in this contribution.Comment: AASLaTeX, 5 pages, 4 figures. Accepted in Astrophysics and Space
Scienc
On the possibility of refining by means of optical location some astronomical parameters of the system - Earth-Moon
Optical location of moon in Earth-Moon system using artificial light reflector, on lunar surfac
Extragalactic Relativistic Jets and Nuclear Regions in Galaxies
Past years have brought an increasingly wider recognition of the ubiquity of
relativistic outflows (jets) in galactic nuclei, which has turned jets into an
effective tool for investigating the physics of nuclear regions in galaxies. A
brief summary is given here of recent results from studies of jets and nuclear
regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic
Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B.
Leibundgut (Springer: Heidelberg 2006
Neutrino spin rotation in dense matter and electromagnetic field
Exact solutions of the Dirac--Pauli equation for massive neutrino with
anomalous magnetic moment interacting with dense matter and strong
electromagnetic field are found. The complete system of neutrino wavefunctions,
which show spin rotation properties are obtained and their possible
applications are discussed.Comment: 11 pages, latex, misprints are correcte
The Effect of Copper and Manganese on the Amorphization Process in a Thin Fe–Si–Mg–O Film
The effect of copper and manganese on the amorphization process in the surface layer of a technical Fe-3% Si alloy during annealing in the α → γ transition temperature range was determined by x-ray phase analysis. The presence of 0.5 wt. % Cu and 0.3 wt. % Mn in the initial Fe-3% Si solid solution significantly enhances the amorphization process that occurs when heated in the temperature range 920… 960∘C as an alternative to the α → γ phase transformation. The effect of amplification of amorphization is both in obtaining a larger amount of material in the amorphous state, and in the appearance of two amorphous phases, differing in average interatomic distance. The composition of the amorphous phase is approximately described as Fe89Si6Mg4Mn0.5Cu0.5 in the presence of Cu and Mn atoms and Fe90Si6Mg4 in the case of their absence in the amorphous layer.
Keywords: amorphization, non-ambient x-ray diffraction, Fe-3%Si, phase transition, thermal stability
The Location of the Core in M81
We report on VLBI observations of M81*, the northwest-southeast oriented
nuclear core-jet source of the spiral galaxy M81, at five different frequencies
between 1.7 and 14.8 GHz. By phase referencing to supernova 1993J we can
accurately locate the emission region of M81* in the galaxy's reference frame.
Although the emission region's size decreases with increasing frequency while
the brightness peak moves to the southwest, the emission region seems sharply
bounded to the southwest at all frequencies. We argue that the core must be
located between the brightness peak at our highest frequency (14.8 GHz) and the
sharp bound to the southwest. This narrowly constrains the location of the
core, or the purported black hole in the center of the galaxy, to be within a
region of +/-0.2 mas or +/-800 AU (at a distance of ~4 Mpc). This range
includes the core position that we determined earlier by finding the most
stationary point in the brightness distribution of M81* at only a single
frequency. This independent constraint therefore strongly confirms our earlier
core position. Our observations also confirm that M81* is a core-jet source,
with a one-sided jet that extends to the northeast from the core, on average
curved somewhat to the east, with a radio spectrum that is flat or inverted
near the core and steep at the distant end. The brightness peak is
unambiguously identified with the variable jet rather than the core, which
indicates limitations in determining the proper motion of nearby galaxies and
in refining the extragalactic reference frame.Comment: LaTeX, 10 pages with 3 figures. Typos fixed and slight rewording for
clarity from previous version. Accepted for publication in the Astrophysical
Journa
Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slab
We study the polarization properties of light emitted by quantum dots that
are embedded in chiral photonic crystal structures made of achiral planar GaAs
waveguides. A modification of the electromagnetic mode structure due to the
chiral grating fabricated by partial etching of the wave\-guide layer has been
shown to result in a high circular polarization degree of the quantum
dot emission in the absence of external magnetic field. The physical nature of
the phenomenon can be understood in terms of the reciprocity principle taking
into account the structural symmetry. At the resonance wavelength, the
magnitude of is predicted to exceed 98%. The experimentally achieved
value of % is smaller, which is due to the contribution of
unpolarized light scattered by grating defects, thus breaking its periodicity.
The achieved polarization degree estimated removing the unpolarized nonresonant
background from the emission spectra can be estimated to be as high as 96%,
close to the theoretical prediction
- …