13 research outputs found

    Effect of hofmeister ions on transport properties of aqueous solutions of sodium hyaluronate

    Get PDF
    Tracer diffusion coefficients obtained from the Taylor dispersion technique at 25.0◦C were measured to study the influence of sodium, ammonium and magnesium salts at 0.01 and 0.1 mol dm−3 on the transport behavior of sodium hyaluronate (NaHy, 0.1%). The selection of these salts was based on their position in Hofmeister series, which describe the specific influence of different ions (cations and anions) on some physicochemical properties of a system that can be interpreted as a salting-in or salting-out effect. In our case, in general, an increase in the ionic strength (i.e., concentrations at 0.01 mol dm−3 ) led to a significant decrease in the limiting diffusion coefficient of the NaHy 0.1%, indicating, in those circumstances, the presence of salting-in effects. However, the opposite effect (salting-out) was verified with the increase in concentration of some salts, mainly for NH4SCN at 0.1 mol dm−3 . In this particular salt, the cation is weakly hydrated and, consequently, its presence does not favor interactions between NaHy and water molecules, promoting, in those circumstances, less resistance to the movement of NaHy and thus to the increase of its diffusion (19%). These data, complemented by viscosity measurements, permit us to have a better understanding about the effect of these salts on the transport behaviour of NaHy. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Fundacao para a Ciencia e a Tecnologia (FCT) through COMPETE Programme (Operational Programme for Competitiveness) [UIDB/QUI/00313/2020]; Ministry of Education, Youth and Sports of the Czech Republic DKRVO [RP/CPS/2020/003]Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2020/003; Fundação para a Ciência e a Tecnologia, FCT: UIDB/QUI/00313/202

    Ixazomib-lenalidomide-dexamethasone in routine clinical practice: Effectiveness in relapsed/refractory multiple myeloma

    Get PDF
    [Aim]: To evaluate the effectiveness and safety of ixazomib-lenalidomide-dexamethasone (IRd) in relapsed/refractory multiple myeloma in routine clinical practice. Patients & methods: Patient-level data from the global, observational INSIGHT MM and the Czech Registry of Monoclonal Gammopathies were integrated and analyzed.[Results]: At data cut-off, 263 patients from 13 countries were included. Median time from diagnosis to start of IRd was 35.8 months; median duration of follow-up was 14.8 months. Overall response rate was 73%, median progression-free survival, 21.2 months and time-to-next therapy, 33.0 months. Ixazomib/lenalidomide dose reductions were required in 17%/36% of patients; 32%/30% of patients discontinued ixazomib/lenalidomide due to adverse events.[Conclusion]: The effectiveness and safety of IRd in routine clinical practice are comparable to those reported in TOURMALINE-MM1.This work was supported by Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited

    Ixazomib-lenalidomide-dexamethasone in routine clinical practice: effectiveness in relapsed/refractory multiple myeloma

    Get PDF
    Aim: To evaluate the effectiveness and safety of ixazomib-lenalidomide-dexamethasone (IRd) in relapsed/refractory multiple myeloma in routine clinical practice. Patients & methods: Patient-level data from the global, observational INSIGHT MM and the Czech Registry of Monoclonal Gammopathies were integrated and analyzed. Results: At data cut-off, 263 patients from 13 countries were included. Median time from diagnosis to start of IRd was 35.8 months; median duration of follow-up was 14.8 months. Overall response rate was 73%, median progression-free survival, 21.2 months and time-to-next therapy, 33.0 months. Ixazomib/lenalidomide dose reductions were required in 17%/36% of patients; 32%/30% of patients discontinued ixazomib/lenalidomide due to adverse events. Conclusion: The effectiveness and safety of IRd in routine clinical practice are comparable to those reported in TOURMALINE-MM1. Clinical trial registration: NCT02761187 (ClinicalTrials.gov

    Structure from motion photogrammetry in forestry : a review

    Get PDF
    AbstractPurpose of ReviewThe adoption of Structure from Motion photogrammetry (SfM) is transforming the acquisition of three-dimensional (3D) remote sensing (RS) data in forestry. SfM photogrammetry enables surveys with little cost and technical expertise. We present the theoretical principles and practical considerations of this technology and show opportunities that SfM photogrammetry offers for forest practitioners and researchers.Recent FindingsOur examples of key research indicate the successful application of SfM photogrammetry in forestry, in an operational context and in research, delivering results that are comparable to LiDAR surveys. Reviewed studies have identified possibilities for the extraction of biophysical forest parameters from airborne and terrestrial SfM point clouds and derived 2D data in area-based approaches (ABA) and individual tree approaches. Additionally, increases in the spatial and spectral resolution of sensors available for SfM photogrammetry enable forest health assessment and monitoring. The presented research reveals that coherent 3D data and spectral information, as provided by the SfM workflow, promote opportunities to derive both structural and physiological attributes at the individual tree crown (ITC) as well as stand levels.SummaryWe highlight the potential of using unmanned aerial vehicles (UAVs) and consumer-grade cameras for terrestrial SfM-based surveys in forestry. Offering several spatial products from a single sensor, the SfM workflow enables foresters to collect their own fit-for-purpose RS data. With the broad availability of non-expert SfM software, we provide important practical considerations for the collection of quality input image data to enable successful photogrammetric surveys

    Magneto-responsive hyaluronan hydrogel for hyperthermia and bioprinting: Magnetic, rheological properties and biocompatibility

    No full text
    Magneto-responsive soft hydrogels are used for a number of biomedical applications, e.g., magnetic hyperthermia, drug delivery, tissue engineering, and neuromodulation. In this work, this type of hydrogel has been fabricated from hyaluronan (HA) filled with a binary system of Al2O3 nanoparticles and multicore magnetic particles (MCPs), which were obtained by clustering of superparamagnetic iron oxide FeOx NPs. It was established that the presence of diamagnetic Al2O3 has several positive effects: it enhances the hydrogel storage modulus and long-term stability in the cell cultivation medium; prevents the magnetic interaction among the MCPs. The HA hydrogel provides rapid heating of 0.3 °C per min under exposure to low amplitude radio frequency alternating magnetic field. Furthermore, the magneto-responsive hydrogel was successfully used to encapsulate cells and extrusion-based 3D printing with 87±6% cell viability, thus providing a bio-ink. The combination of high heating efficiency, softness, cytocompatibility, and 3D printability of magnetic HA hydrogel leads to a material suitable for biomedical applications

    Electrochemically prepared composites of graphene oxide and conducting polymers: Cytocompatibility of cardiomyocytes and neural progenitors

    No full text
    The cytocompatibility of cardiomyocytes derived from embryonic stem cells and neural progenitors, which were seeded on the surface of composite films made of graphene oxide (GO) and polypyrrole (PPy-GO) or poly(3,4-ethylenedioxythiophene) (PEDOT-GO) are reported. The GO incorporated in the composite matrix contributes to the patterning of the composite surface, while the electrically conducting PPy and PEDOT serve as ion-to-electron transducers facilitating electrical stimulation/sensing. The films were fabricated by a simple one-step electropolymerization procedure on electrically conducting indium tin oxide (ITO) and graphene paper (GP) substrates. Factors affecting the cell behaviour, i.e. the surface topography, wettability, and electrical surface conductivity, were studied. The PPy-GO and PEDOT-GO prepared on ITO exhibited high surface conductivity, especially in the case of the ITO/PPy-GO composite. We found that for cardiomyocytes, the PPy-GO and PEDOT-GO composites counteracted the negative effect of the GP substrate that inhibited their growth. Both the PPy-GO and PEDOT-GO composites prepared on ITO and GP significantly decreased the cytocompatibility of neural progenitors. The presented results enhance the knowledge about the biological properties of electroactive materials, which are critical for tissue engineering, especially in context stimuli-responsive scaffolds. © 2019 Elsevier B.V.Czech Science FoundationGrant Agency of the Czech Republic [19168615]; Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I [L01504]; Jane and Aatos Erkko Foundation (Finland

    Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate

    No full text
    Tracer diffusion coefficients obtained from the Taylor dispersion technique at 25.0 °C were measured to study the influence of sodium, ammonium and magnesium salts at 0.01 and 0.1 mol dm−3 on the transport behavior of sodium hyaluronate (NaHy, 0.1%). The selection of these salts was based on their position in Hofmeister series, which describe the specific influence of different ions (cations and anions) on some physicochemical properties of a system that can be interpreted as a salting-in or salting-out effect. In our case, in general, an increase in the ionic strength (i.e., concentrations at 0.01 mol dm−3) led to a significant decrease in the limiting diffusion coefficient of the NaHy 0.1%, indicating, in those circumstances, the presence of salting-in effects. However, the opposite effect (salting-out) was verified with the increase in concentration of some salts, mainly for NH4SCN at 0.1 mol dm−3. In this particular salt, the cation is weakly hydrated and, consequently, its presence does not favor interactions between NaHy and water molecules, promoting, in those circumstances, less resistance to the movement of NaHy and thus to the increase of its diffusion (19%). These data, complemented by viscosity measurements, permit us to have a better understanding about the effect of these salts on the transport behaviour of NaHy
    corecore