100 research outputs found

    Infestation by Ips amitinus (Eichhoff, 1872), Its Associated Fungi, and Butt Rots in Stands of Pinus sibirica in South-Western Siberia

    Get PDF
    : In 2019, the bark beetle Ips amitinus (native to central Europe) was identified in southwestern Siberia at a distance exceeding 2500 km east of its previously known easternmost location in the European part of Russia. In Siberia, its invasive populations are characterised by high abundance and harmfulness. Here, I. amitinus accomplishes primary attacks on standing vital trees of Pinus sibirica with a lethal outcome. This invasion has already resulted in massive dieback in stands of pine over a large geographic territory. By, 2021, the invaded area was estimated to cover at least 31,200 km2 . The objectives of this study were to investigate fungi associated with/vectored by I. amitinus in its invasive area in south-western Siberia and wood decay fungi that cause root and butt rots to P. sibirica. This led to the following conclusions: (i) DNA analysis of sixty adult beetles of Ips amitinus collected from P. sibirica in south-west Siberia revealed the presence of 143 fungal taxa; (ii) species richness was significantly higher in beetles collected from dead branches than from (more recently infested) dying branches; (iii) fungal communities were >90% dominated by yeasts, among which the most common were Nakazawaea holstii, Kuraishia molischiana, and N. ambrosiae; (iv) entomopathogenic Beauveria bassiana s.l. was the most common fungus isolated from dead/mycosed beetles of I. amitinus, followed by Lophium arboricola and four Ophiostoma spp.; and (v) Heterobasidion parviporum was the most common decay fungus detected, which was causing heart rot in stems of P. sibirica

    Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta

    Get PDF
    Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems

    Neurospora from natural populations: Population genomics insights into the Life history of a model microbial Eukaryote

    Get PDF
    The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research

    Heart transplantation in children with congenital heart disease

    Get PDF
    ObjectivesThe aim of this study was to describe heart transplantation in children with congenital heart disease and to compare the results with those in children undergoing transplantation for other cardiac diseases.BackgroundReports describe decreased survival after heart transplantation in children with congenital heart disease compared with those with cardiomyopathy. However, transplantation is increasingly being considered in the surgical management of children with complex congenital heart disease. Present-day results from this group require reassessment.MethodsThe diagnoses, previous operations and indications for transplantation were characterized in children with congenital heart disease. Pretransplant course, graft ischemia time, posttransplant survival and outcome (rejection frequency, infection rate, length of hospital stay) were compared with those in children undergoing transplantation for other reasons (n = 47).ResultsThirty-seven children (mean [±SD] age 9 ± 6 years) with congenital heart disease underwent transplantation; 86% had undergone one or more previous operations. Repair of extracardiac defects at transplantation was necessary in 23 patients. Causes of death after transplantation were donor failure in two patients, surgical bleeding in two, pulmonary hemorrhage in one, infection in four, rejection in three and graft atherosclerosis in one. No difference in 1- and 5-year survival rates (70% vs. 77% and 64% vs. 65%, respectively), rejection frequency or length of hospital stay was seen between children with and without congenital heart disease. Cardiopulmonary bypass and donor ischemia time were significantly longer in patients with congenital heart disease. Serious infections were more common in children with than without congenital heart disease (13 of 37 vs. 6 of 47, respectively, p = 0.01).ConclusionsDespite the more complex cardiac surgery required at implantation and longer donor ischemic time, heart transplantation can be performed in children with complex congenital heart disease with success similar to that in patients with other cardiac diseases

    The Mating-Type Chromosome in the Filamentous Ascomycete Neurospora tetrasperma Represents a Model for Early Evolution of Sex Chromosomes

    Get PDF
    We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first “evolutionary stratum”, genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers

    Whole-Genome and Chromosome Evolution Associated with Host Adaptation and Speciation of the Wheat Pathogen Mycosphaerella graminicola

    Get PDF
    The fungus Mycosphaerella graminicola has been a pathogen of wheat since host domestication 10,000–12,000 years ago in the Fertile Crescent. The wheat-infecting lineage emerged from closely related Mycosphaerella pathogens infecting wild grasses. We use a comparative genomics approach to assess how the process of host specialization affected the genome structure of M. graminicola since divergence from the closest known progenitor species named M. graminicola S1. The genome of S1 was obtained by Illumina sequencing resulting in a 35 Mb draft genome sequence of 32X. Assembled contigs were aligned to the previously sequenced M. graminicola genome. The alignment covered >90% of the non-repetitive portion of the M. graminicola genome with an average divergence of 7%. The sequenced M. graminicola strain is known to harbor thirteen essential chromosomes plus eight dispensable chromosomes. We found evidence that structural rearrangements significantly affected the dispensable chromosomes while the essential chromosomes were syntenic. At the nucleotide level, the essential and dispensable chromosomes have evolved differently. The average synonymous substitution rate in dispensable chromosomes is considerably lower than in essential chromosomes, whereas the average non-synonymous substitution rate is three times higher. Differences in molecular evolution can be related to different transmission and recombination patterns, as well as to differences in effective population sizes of essential and dispensable chromosomes. In order to identify genes potentially involved in host specialization or speciation, we calculated ratios of synonymous and non-synonymous substitution rates in the >9,500 aligned protein coding genes. The genes are generally under strong purifying selection. We identified 43 candidate genes showing evidence of positive selection, one encoding a potential pathogen effector protein. We conclude that divergence of these pathogens was accompanied by structural rearrangements in the small dispensable chromosomes, while footprints of positive selection were present in only a small number of protein coding genes

    Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes

    Get PDF
    Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.This work was supported by Fundacao Ciencia e Tecnologia (FCT/MCTES/PIDDAC, Portugal), under the project (PEst-OE/BIA/UI4046/2014; UID/MULTI/04046/2013) and PhD grant to F.R. (SFRH/BD/86519/2012)

    Genetic Architecture of a Reinforced, Postmating, Reproductive Isolation Barrier between Neurospora Species Indicates Evolution via Natural Selection

    Get PDF
    A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa

    A Relationship between Carotenoid Accumulation and the Distribution of Species of the Fungus Neurospora in Spain

    Get PDF
    The ascomycete fungus Neurospora is present in many parts of the world, in particular in tropical and subtropical areas, where it is found growing on recently burned vegetation. We have sampled the Neurospora population across Spain. The sampling sites were located in the region of Galicia (northwestern corner of the Iberian peninsula), the province of Cáceres, the city of Seville, and the two major islands of the Canary Islands archipelago (Tenerife and Gran Canaria, west coast of Africa). The sites covered a latitude interval between 27.88° and 42.74°. We have identified wild-type strains of N. discreta, N. tetrasperma, N. crassa, and N. sitophila and the frequency of each species varied from site to site. It has been shown that after exposure to light Neurospora accumulates the orange carotenoid neurosporaxanthin, presumably for protection from UV radiation. We have found that each Neurospora species accumulates a different amount of carotenoids after exposure to light, but these differences did not correlate with the expression of the carotenogenic genes al-1 or al-2. The accumulation of carotenoids in Neurospora shows a correlation with latitude, as Neurospora strains isolated from lower latitudes accumulate more carotenoids than strains isolated from higher latitudes. Since regions of low latitude receive high UV irradiation we propose that the increased carotenoid accumulation may protect Neurospora from high UV exposure. In support of this hypothesis, we have found that N. crassa, the species that accumulates more carotenoids, is more resistant to UV radiation than N. discreta or N. tetrasperma. The photoprotection provided by carotenoids and the capability to accumulate different amounts of carotenoids may be responsible, at least in part, for the distribution of Neurospora species that we have observed across a range of latitudes
    corecore