395 research outputs found

    Nonlinear motion and mechanical mixing in as-grown GaAs nanowires

    Get PDF
    We report nonlinear behavior in the motion of driven nanowire cantilevers. The nonlinearity can be described by the Duffing equation and is used to demonstrate mechanical mixing of two distinct excitation frequencies. Furthermore, we demonstrate that the nonlinearity can be used to amplify a signal at a frequency close to the mechanical resonance of the nanowire oscillator. Up to 26 dB of amplitude gain are demonstrated in this way

    Scale dependence and cross-scale transfer of kinetic energy in compressible hydrodynamic turbulence at moderate Reynolds numbers

    Get PDF
    We investigate properties of the scale dependence and cross-scale transfer of kinetic energy in compressible three-dimensional hydrodynamic turbulence, by means of two direct numerical simulations of decaying turbulence with initial Mach numbers M = 1/3 and M = 1, and with moderate Reynolds numbers, R_lambda ~ 100. The turbulent dynamics is analyzed using compressible and incompressible versions of the dynamic spectral transfer (ST) and the Karman-Howarth-Monin (KHM) equations. We find that the nonlinear coupling leads to a flux of the kinetic energy to small scales where it is dissipated; at the same time, the reversible pressure-dilatation mechanism causes oscillatory exchanges between the kinetic and internal energies with an average zero net energy transfer. While the incompressible KHM and ST equations are not generally valid in the simulations, their compressible counterparts are well satisfied and describe, in a quantitatively similar way, the decay of the kinetic energy on large scales, the cross-scale energy transfer/cascade, the pressure dilatation, and the dissipation. There exists a simple relationship between the KHM and ST results through the inverse proportionality between the wave vector k and the spatial separation length l as k l ~ 3^1/2. For a given time the dissipation and pressure-dilatation terms are strong on large scales in the KHM approach whereas the ST terms become dominant on small scales; this is owing to the complementary cumulative behavior of the two methods. The effect of pressure dilatation is weak when averaged over a period of its oscillations and may lead to a transfer of the kinetic energy from large to small scales without a net exchange between the kinetic and internal energies. Our results suggest that for large-enough systems there exists an inertial range for the kinetic energy cascade ...Comment: 14 pages, 10 figure

    Plasma turbulence and kinetic instabilities at ion scales in the expanding solar wind

    Get PDF
    The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heated in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime

    Magnetization reversal of an individual exchange biased permalloy nanotube

    Get PDF
    We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18±2T_B = 18 \pm 2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by X-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.Comment: 8 pages, 4 figure

    Three-dimensional local anisotropy of velocity fluctuations in the solar wind

    Get PDF
    We analyse velocity fluctuations in the solar wind at magneto-fluid scales in two datasets, extracted from Wind data in the period 2005-2015, that are characterised by strong or weak expansion. Expansion affects measurements of anisotropy because it breaks axisymmetry around the mean magnetic field. Indeed, the small-scale three-dimensional local anisotropy of magnetic fluctuations ({\delta}B) as measured by structure functions (SF_B) is consistent with tube-like structures for strong expansion. When passing to weak expansion, structures become ribbon-like because of the flattening of SFB along one of the two perpendicular directions. The power-law index that is consistent with a spectral slope -5/3 for strong expansion now becomes closer to -3/2. This index is also characteristic of velocity fluctuations in the solar wind. We study velocity fluctuations ({\delta}V) to understand if the anisotropy of their structure functions (SF_V ) also changes with the strength of expansion and if the difference with the magnetic spectral index is washed out once anisotropy is accounted for. We find that SF_V is generally flatter than SF_B. When expansion passes from strong to weak, a further flattening of the perpendicular SF_V occurs and the small-scale anisotropy switches from tube-like to ribbon-like structures. These two types of anisotropy, common to SF_V and SF_B, are associated to distinct large-scale variance anisotropies of {\delta}B in the strong- and weak-expansion datasets. We conclude that SF_V shows anisotropic three-dimensional scaling similar to SF_B, with however systematic flatter scalings, reflecting the difference between global spectral slopes.Comment: accepted in MNRA

    Magnetic field turbulence in the solar wind at sub-ion scales: in situ observations and numerical simulations

    Get PDF
    We investigate the transition of the solar wind turbulent cascade from MHD to sub-ion range by means of a detail comparison between in situ observations and hybrid numerical simulations. In particular we focus on the properties of the magnetic field and its component anisotropy in Cluster measurements and hybrid 2D simulations. First, we address the angular distribution of wave-vectors in the kinetic range between ion and electron scales by studying the variance anisotropy of the magnetic field components. When taking into account the single-direction sampling performed by spacecraft in the solar wind, the main properties of the fluctuations observed in situ are also recovered in our numerical description. This result confirms that solar wind turbulence in the sub-ion range is characterized by a quasi-2D gyrotropic distribution of k-vectors around the mean field. We then consider the magnetic compressibility associated with the turbulent cascade and its evolution from large-MHD to sub-ion scales. The ratio of field-aligned to perpendicular fluctuations, typically low in the MHD inertial range, increases significantly when crossing ion scales and its value in the sub-ion range is a function of the total plasma beta only, as expected from theoretical predictions, with higher magnetic compressibility for higher beta. Moreover, we observe that this increase has a gradual trend from low to high beta values in the in situ data; this behaviour is well captured by the numerical simulations. The level of magnetic field compressibility that is observed in situ and in the simulations is in fairly good agreement with theoretical predictions, especially at high beta, suggesting that in the kinetic range explored the turbulence is supported by low-frequency and highly-oblique fluctuations in pressure balance, like kinetic Alfv\'en waves or other slowly evolving coherent structures.Comment: Manuscript submitted to Frontiers Astronomy and Space Sciences, Research Topic: Improving the Understanding of Kinetic Processes in Solar Wind and Magnetosphere: From CLUSTER to MM

    Magnetofluid dynamics of magnetized cosmic plasma: firehose and gyrothermal instabilities

    Full text link
    Both global dynamics and turbulence in magnetized weakly collisional cosmic plasmas are described by general magnetofluid equations that contain pressure anisotropies and heat fluxes that must be calculated from microscopic plasma kinetic theory. It is shown that even without a detailed calculation of the pressure anisotropy or the heat fluxes, one finds the macroscale dynamics to be generically unstable to microscale Alfvenically polarized fluctuations. Two instabilities are considered in detail: the parallel firehose instability (including the finite-Larmor-radius effects that determine the fastest growing mode) and the gyrothermal instability (GTI). The latter is a new result - it is shown that a parallel ion heat flux destabilizes Alfvenically polarized fluctuations even in the absence of the negative pressure anisotropy required for the firehose. The main conclusion is that both pressure anisotropies and heat fluxes trigger plasma microinstabilities and, therefore, their values will likely be set by the nonlinear evolution of these instabilities. Ideas for understanding this nonlinear evolution are discussed. It is argued that cosmic plasmas will generically be "three-scale systems," comprising global dynamics, mesoscale turbulence and microscale plasma fluctuations. The astrophysical example of cool cores of galaxy clusters is considered and it is noted that observations point to turbulence in clusters being in a marginal state with respect to plasma microinstabilities and so it is the plasma microphysics that is likely to set the heating and conduction properties of the intracluster medium. In particular, a lower bound on the scale of temperature fluctuations implied by the GTI is derived.Comment: 10 pages, MNRAS tex style, 1 figur

    von Karman-Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations

    Get PDF
    A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation
    corecore