310 research outputs found

    Cellular automata modelling of slime mould actin network signalling

    Get PDF
    © 2016, The Author(s). Actin is a cytoskeletal protein which forms dense, highly interconnected networks within eukaryotic cells. A growing body of evidence suggests that actin-mediated intra- and extracellular signalling is instrumental in facilitating organism-level emergent behaviour patterns which, crucially, may be characterised as natural expressions of computation. We use excitable cellular automata modelling to simulate signal transmission through cell arrays whose topology was extracted from images of Watershed transformation-derived actin network reconstructions; the actin networks sampled were from laboratory experimental observations of a model organism, slime mould Physarum polycephalum. Our results indicate that actin networks support directional transmission of generalised energetic phenomena, the amplification and trans-network speed of which of which is proportional to network density (whose primary determinant is the anatomical location of the network sampled). Furthermore, this model also suggests the ability of such networks for supporting signal-signal interactions which may be characterised as Boolean logical operations, thus indicating that a cell’s actin network may function as a nanoscale data transmission and processing network. We conclude by discussing the role of the cytoskeleton in facilitating intracellular computing, how computation can be implemented in such a network and practical considerations for designing ‘useful’ actin circuitry

    Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization

    Get PDF
    This work was supported in part by a Marie Curie CIG grant (PCIG14-GA-2013-631011 CSKFingerprints) and a BBSRC grant (BB/P006108/1). MCK is supported by a PhD studentship from the Life Sciences Initiative at QMUL

    Palladin Mutation Causes Familial Pancreatic Cancer and Suggests a New Cancer Mechanism

    Get PDF
    BACKGROUND: Pancreatic cancer is a deadly disease. Discovery of the mutated genes that cause the inherited form(s) of the disease may shed light on the mechanism(s) of oncogenesis. Previously we isolated a susceptibility locus for familial pancreatic cancer to chromosome location 4q32–34. In this study, our goal was to discover the identity of the familial pancreatic cancer gene on 4q32 and determine the function of that gene. METHODS AND FINDINGS: A customized microarray of the candidate chromosomal region affecting pancreatic cancer susceptibility revealed the greatest expression change in palladin (PALLD), a gene that encodes a component of the cytoskeleton that controls cell shape and motility. A mutation causing a proline (hydrophobic) to serine (hydrophilic) amino acid change (P239S) in a highly conserved region tracked with all affected family members and was absent in the non-affected members. The mutational change is not a known single nucleotide polymorphism. Palladin RNA, measured by quantitative RT-PCR, was overexpressed in the tissues from precancerous dysplasia and pancreatic adenocarcinoma in both familial and sporadic disease. Transfection of wild-type and P239S mutant palladin gene constructs into HeLa cells revealed a clear phenotypic effect: cells expressing P239S palladin exhibited cytoskeletal changes, abnormal actin bundle assembly, and an increased ability to migrate. CONCLUSIONS: These observations suggest that the presence of an abnormal palladin gene in familial pancreatic cancer and the overexpression of palladin protein in sporadic pancreatic cancer cause cytoskeletal changes in pancreatic cancer and may be responsible for or contribute to the tumor's strong invasive and migratory abilities

    Vascular phenotype in angiogenic and non-angiogenic lung non-small cell carcinomas

    Get PDF
    We have previously described a group of non-small cell lung carcinomas without morphological evidence of neo-angiogenesis. In these tumours neoplastic cells fill up the alveoli and the only vessels present appear to belong to the trapped alveolar septa. In the present study we have characterised the phenotype of the vessels present in these non-angiogenic tumours, in normal lung and in angiogenic non-small cell lung carcinomas. The vessels, identified by the expression of CD31, were scored as mature when expressing the epitope LH39 in the basal membrane and as newly formed when expressing αVβ3 on the endothelial cells and/or lacking LH39 expression. In the nine putative non-angiogenic cases examined, the vascular phenotype of all the vessels was the same as that of alveolar vessels in normal lung: LH39 positive and αVβ3 variable or negative. Instead in 104 angiogenic tumours examined, only a minority of vessels (mean 13.1%; range 0–60%) expressed LH39, while αVβ3 (in 45 cases) was strongly expressed on many vessels (mean 55.5%; range 5–90%). We conclude that in putative non-angiogenic tumours the vascular phenotype is that of normal vessels and there is no neo-angiogenesis. This type of cancer may be resistant to some anti-angiogenic therapy and different strategies need to be developed

    Characterization of the Primo-Vascular System in the Abdominal Cavity of Lung Cancer Mouse Model and Its Differences from the Lymphatic System

    Get PDF
    Cancer growth and dissemination have been extensively studied for a long time. Nevertheless, many new observations on anatomy and histopathology of cancer events are still reported such as formation of a vasculogenic-like network inside aggressive tumors. In this research, new kinds of micro-conduits, named primo-vessels, were found inside the abdominal cavity of NCI-H460 lung cancer murine xenograft models. These vascular threads were largely distributed on the surfaces of various organs and were often connected to peritoneal tumor nodules. Histological and immunofluorescent investigations showed that the primo-vessels had characteristic features that were distinctively different from those of similar-looking lymphatic vessels. They had multiple channels surrounded with loose collageneous matrices, which is in contrast to the single-channel structure of other vascular systems. The rod-shaped nuclei aligned longitudinally along the channels were assumed to be the endothelial cells of the primo-vessels, but LYVE-1, a specific marker of lymphatics, was not expressed, which indicates a clear difference from lymphatic endothelial cells. Taken together these findings on and characterization of the novel threadlike vascular structures in cancer models may have important implications for cancer prognosis and for therapy

    Dynamics of Mechanical Signal Transmission through Prestressed Stress Fibers

    Get PDF
    Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows temporally oscillatory signals in the physiological frequency range to travel a long distance without significant decay due to material viscosity and/or cytosolic drag

    Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    Get PDF
    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

    Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?

    Get PDF
    Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and ‘hard-wired’ elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca2+) flux activates the hexagonal Ca2+-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca2+ information via phosphorylation as ordered arrays of binary ‘bits’. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six “bits”, and thus “bytes”, with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells
    corecore