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Abstract 

The importance of microenvironment and context in regulation of tissue-specific genes is 

finally well established.  DNA exposure to, or sequestration from, nucleases can be used 

to detect differences in higher order chromatin structure in intact cells without disturbing 

cellular or tissue architecture. To investigate the relationship between chromatin 

organization and tumor phenotype, we utilized an established 3-D assay where normal 

and malignant human breast cells can be easily distinguished by the morphology of the 

structures they make (acinus-like vs tumor-like, respectively). We show that these 

phenotypes can be distinguished also by sensitivity to AluI digestion where the 

malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the 

T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase 

(P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to 

AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic 



reversion, polarization, and shift in DNA organization act through a cAMP-dependent-

protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to 

fibronectin also reverted the malignant phenotype, polarized the acini, and changed 

chromatin sequestration. These experiments show not only that modifying the tumor 

microenvironment can alter the organization of tumor cells but also that architecture of 

the tissues and the global chromatin organization are coupled and yet highly plastic. 

 
Introduction 

We have shown previously that the degree of malignancy, the organization of 

cytoskeleton, and the composition of the extracellular matrix (ECM) influence chromatin 

structure (Maniotis et al., 2005). We found that the DNA of cultured cell lines from 

malignant tumors, transformed fibroblasts harboring 3 oncogenes, and cells collected 

from human tumors were more resistant to nucleases compared to DNA from normal or 

nonmalignant and weakly malignant cells. In addition, cells with the same genotype 

exhibit different degrees of DNA sequestration and exposure when cytoskeletal 

components were selectively disrupted, or when they were cultured on different ECM 

components (Maniotis et al., 2005). 

 

Without viral insertion, additional deletion, or mutation of genes, it is possible to revert 

malignant tumor cells into cells those behave phenotypically normal. On 2-dimensional 

(2-D) surfaces, malignant cells can be induced by addition of cAMP to cease blebbing, 

form an organized cytoskeleton, and develop contact-inhibited monolayers (Krystosek et 

al., 1990; Puck et al., 2002). In a 3-dimensional (3-D) tissue culture system, it is possible 

to induce breast cancer cells to form normal tissue structures resembling breast acini 

(Wang et al., 2002; Weaver et al., 2002; Weaver et al., 1997). In experimental animal 

models, teratocarcinoma cells placed into mammalian embryos (Mintz and Illmensee, 



1975), avian embryos transformed with Rous sarcoma virus (Dolberg and Bissell, 1984), 

and metastatic, aneuploid melanoma cells placed in chick embryos (Kulesa et al., 2006) 

develop into normal structures and tissues, and do not form tumors as they would in the 

adult organisms. These findings demonstrate that the phenotypes of malignant, 

metastatic, or transformed cells are highly plastic and regulated by the environment in 

which they are placed. The mechanisms underlying these phenotypic plasticities are not 

understood. In addition, it is not known if changes in cell phenotype are accompanied by 

epigenetic changes in DNA organization.  

  

Here we have employed a well-characterized, phenotypically breast tumor model system 

in 3-D (Bissell and Labarge, 2005; Petersen et al., 1992; Weaver et al., 1997) to 

determine whether the transition of a tumor cells from disorganized clusters to 

organized, polar acinus-like structures is accompanied by global epigenetic changes in 

chromatin structure that could be quantified using the degree of resistance to DNA-

degrading enzymes.  We show that the organization of DNA in a malignant, mammary 

epithelial cell line follows tissue architecture. Moreover, tissue phenotype, and DNA 

organization are plastic, and reversible. We take advantage of these observations to test 

the following question: Through manipulation of single molecules in the 

microenvironment, is it possible to reversibly control DNA exposure/sequestration, cell 

polarity, tumor morphology, and ultimately, tumor behavior?  

 
 
Materials and Methods 

Cell lines and Cell culture 

MCF10A, a nonmalignant human breast epithelial cells was obtained from American 

Type Culture Collection (Rockville, MD); the spontaneously transformed and malignant 

human breast epithelial line, HMT-3522 T4-2, was isolated by (Briand et al., 1996) and 



was from the laboratory of  Mina J Bissell at Lawrence Berkley National Lab. MCF10A 

cells were maintained in DMEM/F12 (Biowhittaker, Inc. Walkersville, MD) containing 20 

ng/mL EGF (Calbiochem, Corp, San Diego, CA), 1.4 x 10-6 M hydrocortisone (BD 

Bioscience, San Jose, CA), 0.1 ng/mL Cholera toxin (Sigma, St Louis, MO), 10 X 10-6 

g/mL human Insulin (Calbiochem Corp.), 2 mM Glutamine L, 5% horse serum (Fisher, 

Ontario, Canada) and penicillin/streptomycin.  HMT-3522 T4-2 cells were routinely 

grown in H14 medium without 10 ng/ml EGF on Vitrogen-coated plates  (Biowhittaker, 

Inc. Walkersville, MD) as described (Weaver et al., 2002). 

 

3-D Cultures 

Three-dimensional cultures were prepared based on previously described protocols 

(Debnath et al., 2003; Weaver et al., 1997) with some modifications: Cover slips  (18 x 

18 mm) were coated with 120 µl of Reduced growth factor Matrigel (BD Bioscience, San 

Jose, CA). Single cell suspensions (0.5 - 1.0 X 105 cells per slip) were seeded on top of 

polymerized Matrigel, incubated for 30 min and over-laid with 2.5 ml of culture medium 

containing no EGF or serum. Cells were overlaid with medium containing 2% Matrigel. 

Cultures were grown for days indicated in figure legends, adding new medium every 

third day. 

 
 
 
DNA Digestion Assay 
  
Cell smear assays were performed as described previously (Maniotis et al., 2005). 

Briefly, monolayer cultures grown on 10 cm dishes (70-90 % confluent) were 

mechanically dislodged or trypsinized off the plate, collected by centrifugation, re-

suspended in serum-free DMEM. A drop (20 µl) of the suspension was placed on a glass 

slide and dried for 1 hour. DNA digestion was initiated by adding 50 µl of serum free 



DMEM containing 0.5 µl of 10 U/µl AluI (Promega, San Luis Obispo CA) restriction 

enzyme (5 U per smear) for 30-90 min, and terminated by adding 1 µg/ml Ethidium 

bromide (Fisher Scientific) to stain DNA. Nuclei were observed and photographed using 

a Leica inverted fluorescent microscopy (Leica, Bannockburn, IL). 

 

DNA digestion was performed on cells in 3-D cultures grown for 14 days.  In preliminary 

experiments, we first determined both the time and concentration of AluI required for 

DNA digestion taking into account that large aggregates of T4-2 contains more DNA 

than smaller MCF10A acini. Eight hours digestion using 60 Units of AluI was sufficient 

for complete digestion of MCF10A organized acini. The T4-2 aggregates still exhibited 

partial resistance to digestion after 36 hours of digestion using a total of 600 Units AluI 

(added 200 Units every 12 hour) suggesting that the difference in DNA digestion is not 

due to differences in the amount of DNA contained in the 3-D cultures  

   

Both Triton X-100 (0.1%) and NP-40 (0.1%) were tested as detergents to permeabilize 

cells in 3-D cultures to explore if the detergent per se affected DNA digestion. No 

difference in sensitivity to DNA digestion was observed using either one of these 

detergents, however NP-40 restored the normal morphology (round shape) of nuclei 

better than Triton X100 making it easier to evaluate the results. Cells in 3-D cultures 

grown 14 days were first permeabilized for 15 min with 0.1% NP-40, rinsed gently 3 

times in PBS and incubated with serum-free DMEM containing AluI restriction enzyme 

(Promega, San Luis Obispo CA) for 24h in an incubator at 37˚C. Three-dimensional 

cultures of MCF10A acini, HMT-3522 T4-2 aggregates and HMT-3522 T4-2 revertants 

were digested with 20 µl AluI (100 U/ml of media) added twice (total 400U/reaction) 

within a 24-hour incubation period. Ethidium bromide (0.5 µg/ml) was added to label 

DNA at the termination of the reaction. Nuclear fluorescence was photographed with a 



Leica inverted fluorescent microscope. Parallel cultures in each experiment were stained 

with Trypan blue (MP Biomedicals, Ohio) to confirm complete permeabilization.  

  

Flow Cytometry 

Cells from monolayer cultures of MCF10A and T4-2 were harvested either by scraping 

or trypsinization, diluted in PBS, and collected by centrifugation. The pellet was re-

suspended in 0.1% NP-40 and incubated for 1 min at room temperature to permeabilize 

the cells, followed by a second spin to wash away detergent. Pellets were re-suspended 

in 0.5 ml of regular DMEM with 65 U of AluI and incubated for 1h under rotation at 37˚C. 

Propidium iodide (1 µg/ml, Invitrogen/Molecular Probes, Carlsbad, CA) was added 

directly to each reaction at its conclusion, and the cell suspension was filtered through 

flow tubes with a filtered cartridge before flow cytometric analysis.  

 

After treating T4-2 non-reverted and reverted cells from 3-D cultures with Dispase (BD 

Bioscience, San Jose) for 30 min at 37˚C to degrade Matrigel proteins, cells were 

harvested into 15 ml Falcon tubes and re-suspended. To disperse the structures into 

single cell suspension, Trypsin (0.25%) was added (200 ul) and incubated for 5 min at 

37°C. Single cells were collected by centrifugation and re-suspended in PBS containing 

1µg/ml propidium iodide (Invitrogen/Molecular Probes, Carlsbad, CA). Cell suspensions 

were filtered through Flow tubes with a filtered cartridge and taken to flow cytometric 

analysis. All analyses were performed on a FACS Calibur (BD Bioscience, San Jose) 

equipped with a 488 laser for forward and side scatter, and 520, 575 and 675 nm 

detectors. Each run ended at 10,000 counts and was analyzed using FACS dot-plots 

and histograms. Propidium iodide signal represents labeled DNA, and signal intensity of 

undigested DNA (roughly corresponding to fluorescent intensity 102-104) was gated as 



M2. Lower signal intensity representing digested DNA (shorter DNA fragments) was 

gated as M1.  

 

Phenotypic Tumor Reversion with PI3K inhibitor and or dibutyryl-cAMP 

Cells were seeded on Matrigel as described above, overlaid with 2.5 ml of growth 

medium containing 8 µM PI3K inhibitor LY294002 (Calbiochem/EMD Biosciences, Inc.) 

San Diego, CA), or a combination of 6 µM LY294002 and 1 mM N6-dibutyryl-cAMP 

(Sigma-Aldrich St Louis, MO)). Cultures were maintained for 14 days with addition of 

new drugs every third day. No toxicity was observed in either normal or tumorigenic 3-D 

cultures of mammary epithelial cells at these drug concentrations. Dibutyryl-cAMP 

analog, in addition to elevating cAMP within the cell, metabolizes to butyrate, which 

alone is known to have distinct biological effects. However sodium butyrate, in 

concentrations ranging from 1-2mM, did not induce tumor reversion when added to the 

T4-2 cell cultures, thus eliminating a possible butyrate effect involved in tumor reversion. 

In experiments testing cAMP analog specificity and tumor reversion, cells were seeded 

as above and overlaid with medium containing either 0.5 mM 8-CPT-2´-O-Me-cAMP 

(BioLog Life Science, Bremen, Germany) or 0.5 mM N6-Monobutyryl-cAMP (BioLog Life 

Science).  

 

Phenotypic Tumor Reversion with Antibodies to Extracellular Matrix Proteins 

Cells were seeded on Matrigel as described above, and overlaid with 2.5 ml medium 

containing one of the following antibodies:rabbit anti-human fibronectin (A0245, Dako, 

Carpineria, CA, 1:100 dilution), mouse anti-human laminin (Lam-89, Sigma-Aldrich, St 

Louis, MO, 1:100 dilution), mouse anti-human Collagen IV (CIV22, Dako, Carpineria, 

CA, 1:100 dilution), rabbit anti-human Collagen I (CL50111AP, Cedarlane, Hornby, 



Ontario, 1: 100 dilution) and mouse anti-human gamma-tubulin (Sigma-Aldrich St Louis, 

MO). The cultures were fed every third day by overlay with 1 ml of medium containing 

fresh antibody. 

 

Immunofluorescence Microscopy 

Cells were cultured on top of a Matrigel-covered cover slip for 14 days as described 

above. Cover slips were washed 3 times with cytoskeleton extraction buffer (50 mM 

HEPES, 300 mM sucrose, 100 mM KCl, 5 mM MgCl2, 5 mM EDTA, 0.5 % Triton X-100, 

containing 1 mM sodium orthovanadate, 20 mM sodium fluoride and 20 µl/ml protease 

inhibitor cocktail from Sigma-Aldrich for 3 sec, rinsed with 1 X PBS and fixed in 100% 

ice-cold methanol (5 min in –20˚C) followed by 5 min incubation in ice-cold 100% 

acetone. Cells were rinsed 3 times in 1 x PBS and incubated over night at 4˚C with 

mouse anti-human β4 intergrin (clone E31) at a 1:200 dilution (Chemicon, Temecula, 

CA) or mouse anti-β-catenin (clone 14) at 5 µg/ml dilution  (BD Transduction Labs, San 

Jose, CA). Slides were washed 3 times for 2 - 5 min, incubated with a 1:200 dilution of 

goat anti-mouse secondary antibody conjugated to Alexa Fluor 546 (Molecular Probes) 

for 30 min at, washed 3 x (as above) and mounted on glass slides in Vectashield 

mounting medium (Vector Laboratories, Burlington, CA). Control cultures for all 

experiments were treated with the same concentration of non-specific rabbit IgG  (Cat. 

No. ab27478; Abcam, Cambridge, MA). The cultures were fed every third day by overlay 

of 1ml medium containing fresh antibody. 

 

Laser Scanning Confocal Microscopy 

Confocal images were taken on a Zeiss LSM510 laser scanning microscope (Carl Zeiss 

Micro Imaging Inc., Thornwood, New York, USA) using Incident Light Fluorescence and 



Differential Interference Contrast (DIC) with 25X and 63X water immersion objectives. 

Argon laser was applied for red fluorescence (AlexaFluor 546 and EtBr2 at 543 nm 

wavelength) and UV laser for blue fluorescence (DAPI at 405 nm wavelength). Images 

were captured using LSM Software Reliase 2.5 on a standard high-end Pentium PC. 

 
Results 

Phenotypic reversion of tumorigenic T4-2 cells   

The behavior of T4-2 tumorigenic cells in 3-D culture conditions was compared with 

normal MCF10A breast epithelial cells. After 10 to 14 days, MCF10A cells formed 

polarized acini (Figure 1 A) with the nuclei arranged circumferentially around the hollow 

interior. β4-integrin was distributed in a circular ring, facing the extracellular matrix 

environment (Figure 1B) and β-catenin was identified internally on cell surfaces between 

different cells comprising the multi-cellular acini (Figure 1C). By contrast, within 10 to 14 

days, T4-2 cells developed into disorganized aggregates (Figure 1D) that were 

considerably larger than polarized structures formed by MCF10A cells (note differences 

in scale bar sizes) (Figure 1). In the disorganized T4-2 aggregates, β4-integrin 

distribution was observed on cell surfaces facing all directions, both between cells and 

on surfaces facing the extracellular environment (Figure 1E). Also, in the disorganized 

T4-2 aggregates, β-catenin was distributed in and between most of the cells (Figure 1F). 

Compared to the architecture of MCF10A acini, the disorganized T4-2 aggregates 

appeared to exhibit complete loss of polarization. 

 

Tumorigenic T4-2 cells can be induced to develop into architecturally-normal acinus-like 

structures in vitro when cultured in the presence of a PI3K inhibitor, and these acinus-

like structures exhibit non-tumorigenic behavior in nude mice (Wang et al., 2002; 

Weaver et al., 2002; Weaver et al., 1997). We confirmed the in vitro reversion of 



tumorigenic T4-2 cells by culturing on Matrigel in the presence of 8 µM PI3K inhibitor 

LY294002 (not shown) consistent with the findings of (Liu et al., 2004; Wang et al., 2002; 

Weaver et al., 2002; Weaver et al., 1997). We also obtained phenotypic reversion using 

dibutyryl-cAMP at a concentration of 1mM (not shown), consistent with previous 

observations of phenotypic tumor reversion of monolayer cultures (Krystosek et al., 

1990).  

  

A combination of 6 µM LY294002 PI3K inhibitor and 1mM dibutyryl-cAMP induced the 

formation of reverted structures most similar to the acini formed by MCF10A cells in 

terms of size, polarization, and lumen formation (Figure1). In the acini formed by the 

reverted T4-2 cells, a dense ring of β4-integrin surrounded each spheroid (Figure 1H), 

similar to the ring of integrin formed around normal MCF10A structures (Figure 1B). In 

addition, β-catenin was redistributed from a disorganized haphazard pattern in the non-

drug-treated T4-2 aggregates, to a lace-like or stellar pattern of the drug treated 

structures (compare Figure 1F and I) that closely resembled β-catenin distribution in 

MCF10A cells in 3D culture conditions (compare Figure 1C and I). Moreover, acinus-like 

structures formed by T4-2 cells exposed to the combination of LY294002 PI3K inhibitor 

and dibutyryl-cAMP, were hollow, similar to the MCF10A acini (see Figure 1B and H). 

Therefore, because of the degree of fidelity we observed in the architecture of the 

revertants compared to normal MCF10A structures when using the combination of 6 µM 

LY294002 PI3K inhibitor and 1mM dibutyryl-cAMP, this treatment was employed as our 

standard protocol to consistently induce revertants exhibiting acinus-like structures with 

size and phenotype most similar to MCF10A acini. 

 



Differential DNA digestion in normal versus tumorigenic mammary epithelial cells 

grown in 2-D cell cultures 

Consistent with our reported observations (Maniotis et al., 2005), a MCF10A cell-smear 

assay showed that the DNA in these cells was extensively digested after a 1.5 hour 

exposure to AluI restriction enzyme (Figures 2A, B). By contrast, DNA in the nuclei of 

malignant T4-2 cells appeared to be mostly undigested after 1.5 hours exposure to AluI 

(Figures 2C, D). To confirm these qualitative observations, DNA digestion was quantified 

by flow cytometry (see Materials and Methods). Under these conditions, a shift in the 

DNA profile of MCF10A cells was observed within 60 min of AluI digestion (Figure 2 E 

and F), while less of a change was observed for tumorigenic T4-2 cells treated in the 

same manner (Figure 2G and H). The DNA profile for non-treated and AluI-treated 

MCF10A and T4-2 cells was collected from 5 separate DNA digestion experiments and 

averaged (Figure 2I).  Figures 2J and 2K demonstrate the degree of AluI digestion in 

MCF10A and T4-2 cells that were subjected to flow cytometry analysis.  

 

Differential DNA digestion in normal versus tumorigenic mammary epithelial cells 

grown in 3-D cell cultures 

To explore the sensitivity of DNA to AluI restriction enzyme of cells exhibiting 3-D 

architectural structure we developed an assay for the digestion of cells in 3-D culture 

conditions by AluI (see Materials and Methods). MCF10A epithelial cells and T4-2 

tumorigenic breast carcinoma cells were cultured for 14 days on Matrigel and allowed to 

form small acinus-like structures or large disorganized aggregates, respectively (see 

Figure 1). Following permeabilization with 0.1% NP-40 for 10 minutes, nuclei and 

morphology remained intact (Figure 2L, M, N, O, P and Q) in the 3-D cultures of 

MCF10A and transformed T4-2 respectively. Furthermore, these conditions allowed 

sufficient permeabilization for complete uptake of Trypan blue in small acini or acinus-



like structures of MCF10A, reverted T4-2 (Figure 2R and S) and large transformed T4-2 

aggregates (Figure 2T), indicating that the 3-D structures were completely 

permeabilized. 

 

After incubation with AluI for 24h, the chromatin in MCF10A acini was completely 

digested (Figure 2U and Y). By contrast, chromatin in T4-2 cells forming disorganized 

aggregates resisted digestion in the same time period under identical conditions (Figure 

2V and Z). Thus, the chromatin of MCF10A cells assembled into acini was far more 

sensitive to AluI digestion than the chromatin of T4-2 cells assembled into disorganized 

multicellular aggregates (compare high magnification images Figures 2Y and Z).  

 

Reversible manipulation of phenotype and DNA sequestration  

We applied the reversible T4-2 system to test if there is a differential sensitivity to Alu I in 

DNA of reverted T4-2 cells forming acinis-like structures, compared to DNA in 

transformed T4-2 cells forming disorganized aggregates. Strikingly, under identical AluI 

digestion conditions, we observed that DNA in T4-2 disorganized aggregates (Figure 3A) 

was far more resistant to digestion than the DNA in T4-2 cells induced to form acinus-

like structures (revertants), by either PI3K inhibitor (not shown) or the PI3K inhibitor plus 

dibutyryl-cAMP (Figure 3B). The extent of differential digestion is clearly illustrated by 

images collected at a higher magnification (Figures 3E and F). Both T4-2 revertants and 

aggregate structures displayed an intact morphology as revealed by corresponding DIC 

images (Figure 3G and H). These results demonstrate for the first time that phenotypic 

tumor reversion is accompanied by a significant shift in chromatin sequestration.  

 

Exposure of T4-2 cells to PI3K inhibitor plus dibutyryl-cAMP (Figure 4B) resulted in the 

formation of organized acinus-like structures (Figures 3 C and D) that harbored DNA, 



which completely digested with AluI restriction enzyme. In contrast, the chromatin from 

non-reverted, disorganized T4-2 cell aggregates was more resistant to digestion.   The 

removal of PI3K inhibitor and dibutyryl-cAMP over a 14 day period caused the reverted 

T4-2 acinus-like structures to gradually grow larger, and become disorganized to a point 

where they were phenotypically identical to control, non-reverted T4-2 cells aggregates 

(Figure 3I, J, K and Figure 1 and 2).  As the reverted T4-2 cells changed morphologically 

from organized spheroids (day 0) to disorganized spheroids (day 7) and to disorganized 

aggregates without any evidence of polarity (day 15), DNA became more resistant to 

digestion with AluI restriction enzyme (Figure 3L, M, N, O, P, Q). Quantification using 

flow cytometry confirmed the visual comparisons of DNA digestion experiments (Figure 

3R). Taken together, reversible manipulation of 3-D cultures from a tumor-like 

architecture to a normal architecture, and back again, was consistently accompanied by 

reversible changes in DNA sequestration. 

 

Manipulation of morphology, polarization, and chromatin sensitivity to DNA 

digestion specifically involves a Protein Kinase  A (PKA) coupled signal 

Dibutyryl-cAMP has been reported to induce reverse transformation of a number of 

transformed cell lines grown in monolayer (Krystosek et al., 1990; Puck et al., 2002). 

Treatment with 1mM dibutyryl-cAMP was reported in 12 different tumorigenic cell lines to 

restore normal morphology and sensitivity to nuclear chromatin digestion by DNase I. 

Cyclic AMP has traditionally been thought to act exclusively through the cAMP-

dependent protein kinase A (Ashall et al., 1988; Walsh et al., 1968), and effects of cAMP 

on tumor reversion have been attributable to activation of PKA (Kim et al., 2000; 

Schonberg et al., 1983). However, the action of intracellular cAMP is not only mediated 

by PKA, but also by a newly recognized family of cAMP-binding proteins designated as 



cAMP-regulated guanine nucleotide exchange factors (also known as Epac) (de Rooij et 

al., 1998; Kawasaki et al., 1998). 

 

To discriminate between Epac and PKA coupled signals, we tested specific cAMP 

analogs for their ability to revert T4-2 cells in 3-D cultures. Monobutyryl-cAMP which is a 

poor agonist for Epac but a potent PKA activator (Christensen et al., 2003; Kopperud et 

al., 2003), phenotypically reverted the T4-2 cells into organized acinus-like structures 

(Figure 4A) as was seen for T4-2 cells treated with PI3K inhibitor plus dibutyryl-cAMP 

(Figure 2B). Beta  4-integrin distribution within the monobutyryl-cAMP-reverted acinus-

like structures appeared on the cell surfaces facing the microenvironment and these 

reverted structures appeared to be hollow in the center, confirming polarized 

organization (Figure 4C and D). Furthermore, the nuclei of these reverted T4-2 

spheroids were also sensitive to DNA digestion by AluI (Figure 4E and F). 

Parenthetically, the 8-CPT-2P-O-Me-cAMP analog (a selective and strong agonist for 

Epac (de Rooij et al., 1998)) did not revert tumorigenic T4-2 cells into polarized acinus-

like structures (Figures 4G-H): β4-integrin was randomly distributed on cell surfaces 

throughout the disorganized cell aggregates (Figure 4 I and J), and the nuclei were 

resistant to DNA digestion by AluI (Figure 4K and L).  

 

Antibody interference of extracellular matrix components drives phenotypic tumor 

reversion, induces polarization, and exposes sequestered DNA 

We next aimed to determine if changes in the interaction between T4-2 cells (forming 

either aggregates or reverted acinus-like structures) and the ECM influenced the 

phenotype, structural polarity, and DNA organization. T4-2 cells were cultured in Matrigel 

with antibodies targeting individual ECM components including: fibronectin (FN), 

collagen I (Col I), collagen IV (Col IV), and laminin (LM) (Table 1 and Figures 5A-D).   



The treatment of T4-2 cells with each of these antibodies induced changes in phenotypic 

behavior that were evident as early as 6-7 days (data not shown) and more pronounced 

by day 14 when compared to cultures treated with IgG as a control. (Figure 5E). Anti-FN 

antibody treatment completely reverted the T4-2 cells to acinus-like morphology (Figure 

5A), indistinguishable from revertants produced via the combination of PI3K inhibitor and 

dibutyryl-cAMP or with monobutyryl-cAMP analog alone (compare with Figure 5A with 

Figure 4A and B). Cells grown in the presences of anti-Col I antibody and anti–Col IV 

antibody obtained a spherical morphology (Figure 5B and C). Anti-LM treated cultures 

tended to exhibit horizontal plaque-like structures (Figure 5D). We specifically tested in a 

separate series of experiments if sodium azide may have a synergistic affect on tumor 

reversion since the antibody solvent contains low concentrations of sodium azide. The 

results of these experiments demonstrated that sodium azide had no effect by itself or in 

combination with control antibodies used in these experiments (data not shown). 

 

We next explored if these antibody-induced morphological changes were accompanied 

by changes in polarization.  To test this, T4-2 cells grown on Matrigel for 14 days in the 

presence of various antibodies were immunostained with anti- β4-integrin antibody. In 

this experiment, T4-2 revertants were produced via exposure to PI3K inhibitor and 

dibutyryl-cAMP to serve as controls for normal acinus-like morphogenesis. (Figure 5F 

and F'). Remarkably, T4-2 cultures exposed to anti-FN antibody exhibited polarized 

hollow lumen, and β4-integrin was distributed on the acinus-like surfaces facing the ECM 

(Figure 5 G and G'), identical to the standard controls (Figure 5F), Anti-Col I antibody 

induced spherical structures, however, they did not appear hollow nor were they 

polarized as suggested by the random distribution of β4-integrin (Figure 5H and H'). Anti-

LM antibody-treated cultures also did not appear to be polarized and exhibited long 



strings of β4-integrin staining between the horizontal cell plaques (Figure 5I). Cells 

grown in the presence of non-specific IgG served as a negative control with respect to 

polarization and behaved similar to untreated cultures  (Figure 5J and K). 

We next wanted to determine the nuclease sensitivity of DNA from cells that assumed 

polarized structures after treatment with an anti-FN antibody and to compare this 

sensitivity with that of cells treated with an anti-laminin antibody that induced the 

smallest degree of morphological reversion. In this experiment, we included untreated, 

transformed T4-2 aggregates and PI3K inhibitor/dibutyryl-cAMP- reverted T4-2  acinus-

like structures as controls for sequestered and exposed chromatin, respectively (Figure 

5L-O).The nuclei of anti-fibronectin-revertants harbored completely digested DNA after 

24h of digestion with AluI (Figure 5P-S), similar to T4-2 revertants (Figure 5 N and O) 

obtained by the standard protocol. The cells in the plaque-like anti-LM treated cultures, 

by contrast, harbored chromatin that was resistant to 24 hours of AluI digestion (Figure 

T-W), similar to chromatin in the transformed T4-2 aggregates (Figure 5L). 

 

 

Discussion 

We have shown that the DNA of non-malignant breast epithelial cells that form polarized 

acini, are exposed to AluI digestion, while, tumorigenic cells that form disorganized, non-

polarized aggregates, exhibit profound sequestration of their DNA under identical 

enzymatic digestion conditions. Tumorigenic T4-2 cells induced to form polarized acinus-

like structures displayed a level of sensitivity to AluI that was comparable to that 

observed in normal MCF10A cells when assembled into acini. Thus, the act of T4-2 cell 

polarization and assembly into an acinus-like structure shifted the chromatin 

organization of these cells, causing previously sequestered DNA to assume a more 

open conformation with increased accessibility to AluI.   



 

Also, when established reverted T4-2 acinus-like structures are released from agents 

that induce polarity, they grow into disorganized, unpolarized, aggregates. This shift from 

a reverted to a tumorigenic morphology is accompanied by a shift in chromatin 

organization from an exposed to a sequestered state. From these results, we conclude 

that chromatin organization is coupled to tissue architecture, and can be reversibly 

manipulated. More specifically, chromatin organization is linked to cell polarity, and the 

3-D organization of cells in an extracellular environment. 

 

Many different in vitro and in vivo observations support the fact that transformations in 

phenotype and DNA sequestration are not enzymatic artifacts (Maniotis et al., 2005). 

For instance, we previously showed that the DNA in human cancer cells is tightly 

packaged in vitro, making it less susceptible to digestion by restriction enzymes 

(Maniotis et al., 2005). Most importantly, touch preparations made from comparing 

human lesions with their margins in the normal tissue, all demonstrate that the more 

invasive the cancer, the better its DNA is protected from restriction enzyme cleavage 

(Maniotis et al., 2005). Therefore, enhanced DNA protection has now been observed in 

many different types of cancer, and is reversible, suggesting that DNA re-arrangements 

as described here may be a universal feature of malignant cells. The fact that 

sequestration of DNA, and the molecular consequences of such, serve as a physical 

marker for malignancy, may be applicable in other types of cancer detection as well. 

Therefore chromatin organization analysis may be a supplement for current methods of 

cancer diagnostics which detect chemical markers that are highly variable from tumor to 

tumor and from patient to patient, or which are highly specific for certain types of tumors.  

 



In devising the most optimal conditions for generating polarized acinus-like structures 

from T4-2 cells, we discovered that a cocktail of two reagents that can each alone revert 

T4-2 cells produced the most consistent development of acinus-like, polarized 

structures. These reverted structures resembled the polarized acini generated by non-

malignant MCF10A cells. This finding supports previous studies using PI3K inhibitor 

(Wang et al., 2002) or an analog of dibutyryl-cAMP for tumor reversion (Krystosek et al., 

1990; Puck et al., 2002). In addition, we show for the first time that these reagents are 

able to revert cancer cells in a 3-D context. Biochemically, the action of intracellular 

cAMP can be attributed to activation of at least two intracellular substrates, PKA and 

EPAC (de Rooij et al., 1998; Kawasaki et al., 1998).  Using specific cAMP-analogs that 

discriminate between the activation of these substrates (Christensen et al., 2003; 

Kopperud et al., 2003), we found that the reversion of T4-2 morphology, polarity, and 

AluI sensitivity exclusively involves a PKA-coupled signal.  

 

Unraveling the complexity of DNA packaging or sequestration in its native state within 

the intact cell nucleus may suggest a new possible mechanistic explanation of how 

eukaryotic genes are turned on or off, and how they are reversibly expressed or 

suppressed. From a mechanistic point of view, these experiments employing in situ DNA 

digestion with AluI indicate that higher order structure of native chromatin is organized 

such that the sequestration and exposure of DNA is linked to cytoarchitecture (cell 

polarity, cell shape, organoid 3-D architecture). Because DNA, the substrate, must be 

exposed to AluI, the enzyme, in order to be digested, the AluI insensitive revertants 

(DNA sequestered), or the AluI sensitive tumorigenic (DNA exposed) phenotypes 

suggests that proteins organizing higher order chromatin structure are capable of 

reversibly enveloping the DNA as a tightly-wrapped spring (resembling a sleeve), in 

which the DNA can be reversibly exposed or sequestered (Maniotis et al., 2005). Such 



an hypothesis provides a mechanistic picture of how higher order chromatin in the living 

state may grouped together, to expose or sequester DNA in regular patterns. This may 

in turn account for specific malignant cancer, non-malignant cancer, or normal gene 

expression and phenotypic expression types.  

 

When tumorigenic viruses, or when highly invasive tumor cells are placed into embryos, 

tumors do not form, which suggests that the behavior of cancer is contextual (Dolberg 

and Bissell, 1984; Kulesa et al., 2006; Mintz and Illmensee, 1975). These studies 

demonstrate that when highly invasive tumor cells are placed into the complex milieu of 

soluble and insoluble factors within the embryo, they become “regulated,” to behave as 

normal cells, without causing cancer in the mosaic organism that develops. If tumor cells 

are implanted early enough during embryogenesis, some of the tumor cells are passed 

down through the germ line, and to the mosaic organism’s descendents without causing 

cancer in these mosaic organisms (Mintz and Illmensee, 1975). Importantly, context-

regulation of cancer cells in the embryonic environment occurs even when the cancer 

cells have already metastasized from their primary tumor site (Kulesa et al., 2006). This 

suggests that context-regulation of cancer cells is possible despite deregulation of 

proteins, of cell structure, of cell cycle, of telomerase activity, and occurs independent of 

mutations, aberrations of oncogenes, and aneuploidy. 

 

It is known that the ECM by itself can provide signals that are relayed from integrin 

receptors on the cell surface to the nucleus by (Ingber et al., 2003; Maniotis et al., 1997; 

Roskelley and Bissell, 2002). Therefore, we explored if tumor reversion, and the 

accompanying chromatin reorganization, could be obtained by interfering only with 

specific cues from the ECM using antibodies to proteins found in our malignant tumor 

samples. In particular, we specifically targeted those ECM components that have been 



reported to be highly expressed by various tumors (Ioachim et al., 2002; Ioachim et al., 

2005; Lin et al., 2005).  The different antibodies used, all induced profound changes in 

the development and the resulting morphology of T4-2 structures (see Table 1 and 

Figure 5). Of key importance, the structures induced by anti fibronectin exhibited 

chromatin that was exposed in an identical fashion to chromatin of normal acini and 

chromatin in acinus-like structures produced by cAMP and PI3K inhibitor. By contrast, 

and at the other extreme, the anti laminin induced structures (large horizontal plaque-like 

structures) exhibited chromatin that was sequestered. 

 

Here we have shown that placing T4-2 cells in the context of a laminin-rich matrix in the 

presence of a single component such as anti-fibronectin induces complete phenotypic 

reversion from normal to tumorigenic phenotype, and from DNA being in a sequestered 

state or an exposed state, and that these states are reversible. These observations 

suggest that the components of the tumor microenvironment can be identified, isolated, 

and perhaps therapeutically exploited, as indicated in the reversion obtained with a 

single molecular species such as anti-fibronectin. 

 

Specific isoforms of fibronectin that are normally expressed in fetal tissue (George et al., 

1997; George et al., 1993), and rarely expressed in adult tissue, have been detected in 

different cases of human cancer (Schor et al., 1988). In addition, the B-isoform of 

fibronectin (EDB-fibronectin) plays a role in cellular transformation and tumor 

pathogenesis (Castellani et al., 1994; Kaczmarek et al., 1994; Labat-Robert, 2004; 

Midulla et al., 2000; Schor et al., 1986; Zardi et al., 1987), and a truncated isoform of 

fibronectin referred to as fetal migration stimulatory factor has been detected in the 

serum of 90% of breast cancer cases (Picardo et al., 1991), as well as in other human 

cancers (Durning et al., 1984; Schor et al., 2003; Schor et al., 1986). Elucidating the 



mechanisms through which ECM components influence tumor cell and DNA 

organization may lead to the identification of new potential targets for cancer therapy. 

 

In summary; 1) information conveyed from the extracellular matrix environment controls 

tissue phenotype, cellular and organoid, polarity, and DNA sequestration or exposure 2) 

shifts in cellular polarity and chromatin organization are concomitant events, and 3) 

agents targeting multiple signaling pathways (eg. PI3K, PKA, and fibronectin) evoke 

identical phenotypes (and chromatin exposure). The causal determinants of indolent or 

malignant cancer cell behavior and chromatin organization appear to be epigenetic 

rather than genetic in nature, and these signaling pathways can be manipulated from 

outside of tumor cells by selecting specific molecular targets within the extracellular 

matrix.  
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Figure legends 
Figure 1.  Restoration of mammary cell polarization and morphogenesis from 
tumorigenic to normal by experimentally manipulation in the context of ECM. 
Zeiss LSM 510 laser Scanning confocal images revealing the morphology and 

polarization of  MCF10A acini (A-C), transformed tumorigenic T4-2 aggregates (D-F) 

and reverted T4-2 acinus like structures (G-I) in 3D culture. A, D, G represent Differential 

Interference Contrast (DIC) micrograph of two-week old cultures on Matrigel fixed and 

immune stained as described in materials and methods. B, E and H show localization of 

β4-integrin revealed by immune-staining and fluorescent laser Scanning confocal. C, F 

and I represent the distribution of beta catenin revealed by immune staining. Alexa 546-

immune-labeled proteins (β4-integrin or β-catenin) are seen as red fluoresecent and blue 

fluorescent represent nuclei stained with DAPI. Reversion of T4-2 was obtained with a 

combination of PI3K-inhibitor LY290042 and dibutyryl-cAMP as described in materials 

and methods. 

 

Figure 2. Differential DNA digestion of chromatin harbored in normal versus 
tumorigenic mammary epithelial cells grown in 2- and 3- D cell cultures. 
Fluorescent micrograph of nonmalignant (MCF10A) and tumorigenic (T4-2) mammary 

epithelial lines. The dry monolayer smears of each culture was incubated without  (A and 

C) or with Alu I (B and D) for 1.5 h at 37˚C and stained with EtBr, to analyze the digested 

DNA by fluorescent microscopy. E-H represents flow cytometry comparing the DNA 

profile of nonmalignant MCF10A and tumorigenic T4-2 cells before (E and G) and after 

(F and H) 60 min of Alu I digestion respectively. DNA profile was determined by 

fluorescent intensity of propidium iodide and was used as a measure of DNA digestion. 

The gating for M1 and M2 indicates nucleus off cell cycle (digested) and in cell cycle 

(undigested). J and K represent fluorescent high magnification micrographs visualizing 

the amount DNA digestion in nonmalignant MCF10A and tumorigenic T4-2 nuclei treated 

similar to samples applied in flow cytometry. A Graphical illustration of flow cytometry 

analysis measurements of nonmalignant (MCF10A) and tumorigenic (T4-2) chromatin 

digestion is shown in panel I. Percent DNA digestion is determined by relative increase 

of fluorescent intensity gated in M1 before and after digestion. Error bars indicate the 

standard error over mean from 5 separate identical experiments. Laser Scanning 

confocal images comparing chromatin of undigested DNA in nonmalignant MCF10A  



(L, P) and tumorigenic T4-2 (M, Q) cells cultured for two weeks on Matrigel, 

permeabilized and stained as described in Materials and Methods. Bright field images of 

3-D cultures treated as described above followed by Trypan blue staining, was included 

to illustrate complete permeabilization of MCF10A acini  (R), reverted T4-2 acinus-like 

structures (S) and transformed T4-2 aggregates (T). Laser Scanning confocal images 

comparing chromatin of Alu I digested DNA in nonmalignant MCF10A acini (U, Y) and 

transformed T4-2 aggregates (V, Z). Cultures were permeabilized as described above 

before Alu I treatment (W, X) and nuclei were stained with EtBr and DAPI and observed 

by fluorescence laser imaging. Note the complete digested nuclei revealed by higher 

magnification micrographs of normal spheroids in contrast to the almost undigested 

nuclei in tumorigenic aggregates.  

 

Figure 3. Reversible manipulation of phenotype and genome sequestration 
Laser Scanning confocal images comparing DNA digested chromatin in transformed T4-

2 aggregates (A,C,F,G) and reverted T4-2 acinus-like structures (B,D,E,H). Cells were 

grown for two weeks on Matrigel without (A,C,F,G) and with 6 µM LY294002 and 1mM 

dibutyryl-cAMP (B,D,E,H), followed by permeabilization and AluI digestion for 24h as 

described in materials and methods. Digested nuclei were stained with EtBr and 

observed by fluorescence laser imaging (B,D) and bright-field images were obtained by 

DIC (C,D,G,H). Note in the higher magnification images that only the nucleolus remains 

undigested in the nuclei of completely digested T4-2 revertants (E), in contrast to only 

partially digested chromatin in transformed T4-2 (F). These data are representative 

images of observations obtained from 5 separate identical experiments. I-K are phase 

contrast images of revertant T4-2 acinus-like structures treated for two weeks with 6 µM 

LY294002 and 1mM dibutyryl-cAMP and then released from drug at day 0 (I), day 7 (J) 

and day 15 (K) after drug release. L-Q are Laser scanning confocal images of T4-2 

cultures treated similar to I-K, followed by permeabilization and 24h AluI incubation. 

Fluorescent micrographs (based on EtBr stained DNA) reveal DNA digestion by Alu I at 

day 0 (L), day 7 (M) and day 15 (N) after drug release. Note the gradual shift from 

normal to tumorigenic morphology accompanied by a similar shift in AluI sensitivity. O, 
P, Q are bright-field image obtained by DIC corresponding to L, M, N. These data are 

representative for 3 separate identical experiments. The percentage of digested DNA 

before and after Alu I digestion on revertant T4-2 at day 0, day 7 and day15 after drug 

release (similar to above) is listed in panel R. Quantitation of digested DNA was 



performed by Flow cytometry analysis and measured as signal-intensity gated in M1 see 

Materials and Methods. Numbers represent the mean of 3 separate identical 

experiments. 

 

Figure 4. cAMP-induced  reversion of morphology, polarization and chromatin 
organization involves a PKA coupled signal 
A-D are phase contrast micrographs comparing the morphology of T4-2 cells grown for 

14 days on Matrigel in the presence (A,B,G) or absense (H) of different cAMP analogs; 

N6-monobutyryl-cAMP (A), dibutyryl-cAMP + LY294002 (B), 8-CPT-2-O´-Me-cAMP (G) 

or untreated (H). Laser scanning images revealing the β4-integrin localization in T4-2 

cultures treated for two weeks with either N6-monobutyryl-cAMP (D) or no drug (J) 

followed by immune staining as described in Materials and Methods. Red indicates β4-

integrin and blue show DAPI stained nuclei. Corresponding bright field images to D and 

J are shown by DIC in (C and I respectively). Laser scanning images revealing nuclei of 

T4-2 cultures treated for two weeks with either monobutyryl-cAMP (F) or no drug (L) 

followed by permeabilization, 24h AluI digestion and EtBr staining as previously 

described. Corresponding bright field images to F and L are show by DIC in (E and K 

respectively). These data are representative for three separate identical experiments. 

 

Figure 5. Reversion of morphology, polarization and chromatin organization by 
interfering with the communication of ECM components.  
Phase contrast micrographs comparing the morphology of T4-2 cells grown for 14 days 

on Matrigel in the presence of different antibodies; treatment with anti- fibronectin (anti-

FN, A), anti-collagen I (anti-COL I, B), anti-collagen IV (anti-COL IV, C), anti-laminin 

(anti-LAM, D), non specific IgG (IgG, E). All images (A-E) are at 200 X magnifications.  

Laser scanning confocal images of T4-2 cells grown and treated as described in A-E, 

followed by immune staining with anti- β4-integrin (shown in red) to reveal structural 

polarization in anti-fibronectin treated cultures (G), anti collagen I treated cultures (H), 

anti laminin trated cultures (panel I) and IgG treated cultures (J). T4-2 cells treated with 

combination of 6 µM LY294002 and 1mM dibutyryl-cAMP (cAMP cocktail, F) represents 

a polarized control and untreated cultures (Untreated, K) represent an unpolarized 

control. Blue represent DAPI stained nucleus (se Materials and Methods). 

Corresponding fields to fluorescent images in F-K are represented in bright field 

(obtained by DIC) in F´-K´ respectively. L-W are Laser scanning images of T4-2 cells 



grown and treated as above followed by permeabilization, 24h AluI digestion and EtBr 

staining (see Materials and Methods). Alu I digested T4-2 aggregates (untreated, L, M) 

and reverted T4-2 (cAMP-cocktail, panel N,O) represent controls for AluI resistant and 

sensitive chromatin respectively. Both low and high magnification images are shown of 

AluI digested T4-2 cultures treated with anti-fibronectin (anti-FN, P-S) and anti-laminin 

(anti-LAM, T-W). Corresponding DIC images are shown to the left of each fluorescent 

micrograph (M, O, Q, S, U, W).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. 
T4-2 cultures1 Morphology Polarization2 DNA digestion3

Untreated  Disorganized 
aggregate 

- Resistant 

LY249002/dibutyryl-cAMP Acinus-like + Sensitive 

Anti fibronectin Acinus-like + Sensitive 

Anti collagen I Spheroid - ND 

Anti collagen IV Spheroid ND ND 

Anti laminin Horizontal plague - Resistant 

Anti IgG Disorganized 
aggregate 

- Resistant 

 
1 Cultures of T4-2 cells grown in 3-dimmension for 14 days in the presences of 

different agents (as indicated) before analyzed. 
2 Determined by β4-integrin distribution (revealed by immune staining) and hollow lumen (revealed by 
nucleus orientation). See Materials and Methods. 



3 The sensitivity of DNA was determined by 24h Alu-I digestion (Materials and Methods) 
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	Abstract
	The importance of microenvironment and context in regulation of tissue-specific genes is finally well established.  DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.
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	Cell smear assays were performed as described previously (Maniotis et al., 2005). Briefly, monolayer cultures grown on 10 cm dishes (70-90 % confluent) were mechanically dislodged or trypsinized off the plate, collected by centrifugation, re-suspended in serum-free DMEM. A drop (20 µl) of the suspension was placed on a glass slide and dried for 1 hour. DNA digestion was initiated by adding 50 µl of serum free DMEM containing 0.5 µl of 10 U/µl AluI (Promega, San Luis Obispo CA) restriction enzyme (5 U per smear) for 30-90 min, and terminated by adding 1 µg/ml Ethidium bromide (Fisher Scientific) to stain DNA. Nuclei were observed and photographed using a Leica inverted fluorescent microscopy (Leica, Bannockburn, IL).
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