65 research outputs found

    Optical cooling and trapping of highly magnetic atoms: The benefits of a spontaneous spin polarization

    Full text link
    From the study of long-range-interacting systems to the simulation of gauge fields, open-shell Lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for other atomic species, the magneto-optical trap (MOT) is the working horse of experiments but its operation is challenging, due to the large electronic spin of the atoms. Here we present an experimental study of narrow-line Dysprosium MOTs. We show that the combination of radiation pressure and gravitational forces leads to a spontaneous polarization of the electronic spin. The spin composition is measured using a Stern-Gerlach separation of spin levels, revealing that the gas becomes almost fully spin-polarized for large laser frequency detunings. In this regime, we reach the optimal operation of the MOT, with samples of typically 3×1083\times 10^8 atoms at a temperature of 15\,ÎŒ\muK. The spin polarization reduces the complexity of the radiative cooling description, which allows for a simple model accounting for our measurements. We also measure the rate of density-dependent atom losses, finding good agreement with a model based on light-induced Van der Waals forces. A minimal two-body loss rate ÎČ∌2×10−11 \beta\sim 2\times10^{-11}\,cm3^{3}/s is reached in the spin-polarized regime. Our results constitute a benchmark for the experimental study of ultracold gases of magnetic Lanthanide atoms.Comment: 21 pages, 9 figure

    Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and Multichannel Quantum Defect Theory analysis

    Full text link
    New measurements of high-lying even parity 6sns 1 ⁣S06sns\, {}^1 \! S_0 and 6snd 3,1 ⁣D26snd\,{}^{3,1}\!D_2 levels of neutral 174^{174}Yb are presented in this paper. Spectroscopy is performed by a two-step laser excitation from the ground state 4f146s2 1 ⁣S04f^{14}6s^2 \, {}^1 \! S_0, and the Rydberg levels are detected by using the field ionization method. Additional two-photon microwave spectroscopy is used to improve the relative energy accuracy where possible. The spectroscopic measurements are complemented by a multichannel quantum defect theory (MQDT) analysis for the J=0 and the two-coupled J=2 even parity series. We compare our results with the previous analysis of Aymar {\it{et al}} \cite{Aymar_1980} and analyze the observed differences. From the new MQDT models, a revised value for the first ionization limit I6s=50443.07041(25)I_{6s}=50443.07041(25) cm−1^{-1} is proposed.Comment: 15 pages, 3 figure

    Engineered far-fields of metal-metal terahertz quantum cascade lasers with integrated planar horn structures

    Get PDF
    The far-field emission profile of terahertz quantum cascade lasers (QCLs) in metal-metal waveguides is controlled in directionality and form through planar horn-type shape structures, whilst conserving a broad spectral response. The structures produce a gradual change in the high modal confinement of the waveguides and permit an improved far-field emission profile and resulting in a four-fold increase in the emitted output power. The two-dimensional far-field patterns are measured at 77 K and are agreement in with 3D modal simulations. The influence of parasitic high-order transverse modes is shown to be controlled by engineering the horn structure (ridge and horn widths), allowing only the fundamental mode to be coupled out

    THz waveguide adapters for efficient radiation out-coupling from double metal THz QCLs

    Get PDF
    We report the development of on-chip optical components designed to improve the out-coupling of double-metal terahertz (THz) frequency quantum cascade lasers (QCLs). A visible reshaping of the optical beam is achieved, independent of the precise waveguide configuration, by direct incorporation of cyclic-olefin copolymer (COC) dielectric optical fibers onto the QCL facet. A major improvement is further achieved by incorporating a micromachined feed-horn waveguide, assembled around the THz QCL and integrated with a slit-coupler. In its first implementation, we obtain a ± 20° beam divergence, offering the potential for high-efficiency radiation coupling from a metal-metal waveguide into optical fibers

    Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers

    Get PDF
    We report the design, fabrication and experimental characterization of surface-emitting terahertz (THz) frequency quantum cascade lasers (QCLs) with distributed feedback concentric-circular-gratings. Single-mode operation is achieved at 3.73 THz with a side-mode suppression ratio as high as ~30 dB. The device emits ~5 times the power of a ridge laser of similar dimensions, with little degradation in the maximum operation temperature. Two lobes are observed in the far-field emission pattern, each of which has a divergence angle as narrow as ~13.5° × 7°. We demonstrate that deformation of the device boundary, caused by anisotropic wet chemical etching is the cause of this double-lobed profile, rather than the expected ring-shaped pattern

    Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser

    Get PDF
    We demonstrate phase-locking of a 2.7-THz metalmetal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier-chain (x2x3x2) from a microwave synthesizer at 15 GHz. Both laser and reference radiations are coupled into a hot electron bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. Spectral analysis of the beat signal (see fig. 1) confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range

    Self-Potential as a Predictor of Seawater Intrusion in Coastal Groundwater Boreholes

    Get PDF
    This work was supported by the Natural Environment Research Council in the UK, as part of the Science and Solutions for a Changing Planet Doctor Training Partnership, run by the Grantham Institute for Climate Change at Imperial College London. We thank Southern Water for access to the boreholes at Saltdean and Balsdean. We thank Southern Water and Atkins Global for funding the installation of the equipment. We also thank Dr Amadi Ijioma for providing a prototype of the electrodynamic modelling code in MATLAB, which has since been adapted for use in a coastal chalk aquifer. Three anonymous reviewers are thanked for their comments, which greatly helped to improve the manuscript. The data used in this paper are in the tables, figures and cited information. The authors have no conflicts of interest to declare.Peer reviewedPublisher PDFPublisher PD

    Permeability and pore connectivity: A new model based on network simulations

    No full text
    International audienceThe purpose of this paper is to model the effect of pore size heterogeneity and pore connectivity on permeability. Our approach is that of conceptual modeling based on network simulations. We simulated fluid flow through pipe networks with different coordination numbers and different pipe radius distributions. Following a method widely used in percolation theory, we sought “universal” relationships (i.e., independent of lattice type) between macroscopic properties such as permeability k and porosity ϕ, and, pore geometry attributes such as hydraulic radius rH, coordination number z, and so forth. Our main result was that in three-dimensional simple cubic, FCC, and BCC networks, permeability obeyed “universal” power laws, k ∝ (z − zc)ÎČ, where the exponent ÎČ is a function of the standard deviation of the pore radius distribution and zc = 1.5 is the percolation threshold expressed in terms of the coordination number. Most importantly, these power law relationships hold in a wide domain, from z close to zc to the maximum possible values of z. A permeability model was inferred on the basis of the power laws mentioned above. It was satisfactorily tested by comparison with published, experimental, and microstructural data on Fontainebleau sandstone
    • 

    corecore