347 research outputs found

    Study Protocol For Clinical Trial of the Fit Families Multicomponent Obesity intervention For african american adolescents and their Caregivers: Next Step From the orbit initiative

    Get PDF
    INTRODUCTION: This study will test the effectiveness of FIT Families (FIT), a multicomponent family-based behavioural intervention, against a credible attention control condition, Home-Based Family Support (HBFS). This protocol paper describes the design of a randomised clinical trial testing the efficacy of the FIT intervention. The protocol will assess the efficacy of FIT to improve health status in African American adolescents with obesity (AAAO) and their primary caregivers on primary (percent body fat) and secondary (physical activity, metabolic control, weight loss) outcomes and its cost-effectiveness. METHODS: 180 youth/caregiver dyads are randomised into FIT or HBFS, stratified by age, gender and baseline per cent overweight. The proposed study follows a two condition (FIT, HBFS) by four assessment time points. Tests will be conducted to identify potential relationship of baseline demographic and clinical variables to our dependent variables and see whether they are balanced between groups. It is hypothesised that youth/caregiver dyads randomised to FIT will show significantly greater reductions in percent body fat over a 12-month follow-up period compared with AAAO receiving HBFS. Preliminary findings are expected by November 2023. ETHICS: This protocol received IRB approval from the Medical University of South Carolina (Pro00106021; see \u27MUSC IRB 106021 Main Approval.doxc\u27 in online supplemental materials). DISSEMINATION: Dissemination activities will include summary documents designed for distribution to the broader medical community/family audience and submission of manuscripts, based on study results, to relevant peer-reviewed scientific high-impact journals. TRIAL REGISTRATION NUMBER: NCT04974554

    A phenomenological exploration of exercise mental toughness: perceptions of exercise leaders and regular exercisers

    Get PDF
    Although elite sport has provided an ideal context for exploring mental toughness (MT), currently, there is scant research examining how this construct might be equally applicable in exercise settings, where high rates of attrition have been reported. The present research, therefore, aimed to address this gap, and to understand and conceptualise exercise mental toughness (EMT) through in-depth phenomenological interviews with a range of exercise leaders and exercise participants. Seven qualified and experienced exercise leaders and seven regular and frequent exercisers from formal exercise environments (i.e. gym and fitness classes) were interviewed. Interviews were digitally recorded, transcribed verbatim and analysed independently by members of the interdisciplinary research team. Key themes were agreed and member checking was used to promote trustworthiness of interpretations. MT was recognisable in exercise settings, with 10 general dimensions found to be relatively consistent with conceptualisations derived from elite sport (e.g. commitment, focus, emotional control, etc.). Importantly, present findings reveal how mentally tough exercisers think and behave in exercise settings. Some negative consequences were also reported such as over-training and training with injuries. The article also discusses how components of EMT may be valuable in terms of exercise maintenance and relapse prevention during exercise behaviour change

    Laboratory desalination experiments with some algal toxins

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Desalination 293 (2012): 1-6, doi:10.1016/j.desal.2012.02.014.Over the last several decades, countries throughout the world have experienced an escalating and worrisome trend in the incidence of harmful algal blooms (HABs). A concern is that highly potent algal toxins might be retained in the treated water, posing a threat to human health. Seawater contaminated with saxitoxins, domoic acid, okadaic acid, and brevetoxins was desalinated using small (<100 mL capacity) reverse osmosis and distillation equipment. Analyses of desalinated water samples indicated efficient removal of the four toxins to greater than 99%, except brevetoxins for which some carryover was observed during distillation. Hypochlorite concentrations of 4 ppm or higher were sufficient to react with all of the saxitoxins, domoic acid and okadaic acid in the samples that contained initial toxin concentrations up to 1,250 ng.mL-1 . Brevetoxins appeared to be unaffected in experiments in which the toxins were exposed to up to 30 ppm hypochlorite in seawater at 35 °C for 60 min. These results and their implications in terms of desalination plant design and operation are discussed.This work was also supported in part by the Woods Hole Center for Oceans and Human Health (NSF Grants OCE-0430724 and OCE-0911031; NIEHS Grant P50ES012742-01) and Effects of Inhaled Florida Red Tide Brevetoxins (NIH Grant P01 ES010594-09)

    Morphology and tectonics of the Mid-Atlantic Ridge, 7°–12°S

    No full text
    We present swath bathymetric, gravity, and magnetic data from the Mid-Atlantic Ridge between the Ascension and the Bode Verde fracture zones, where significant ridge–hot spot interaction has been inferred. The ridge axis in this region may be divided into four segments. The central two segments exhibit rifted axial highs, while the northernmost and southernmost segments have deep rift valleys typical of slow-spreading mid-ocean ridges. Bathymetric and magnetic data indicate that both central segments have experienced ridge jumps since ~1 Ma. Mantle Bouguer anomalies (MBAs) derived from shipboard free air gravity and swath bathymetric data show deep subcircular lows centered on the new ridge axes, suggesting that mantle flow has been established beneath the new spreading centers for at least ~1 Myr. Inversion of gravity data indicates that crustal thicknesses vary by ~4 km along axis, with the thickest crust occurring beneath a large axial volcanic edifice. Once the effects of lithospheric aging have been removed, a model in which gravity variations are attributed entirely to crustal thickness variations is more consistent with data from an axis-parallel seismic line than a model that includes additional along-axis variations in mantle temperature. Both geophysical and geochemical data from the region may be explained by the melting of small (&lt;200 km) mantle chemical heterogeneities rather than elevated temperatures. Therefore, there may be no Ascension/Circe plume

    Modified Quark-Meson Coupling Model for Nuclear Matter

    Get PDF
    The quark-meson coupling model for nuclear matter, which describes nuclear matter as non-overlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: one invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics.Comment: Part of the text is reordered, revised version to appear in Phys. Rev. C. 19 pages, ReVTeX, 4 figures embedde

    Improved X-ray detection and particle identification with avalanche photodiodes

    Full text link
    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work we report on a fitting technique used to account for different detector responses resulting from photo absorption in the various APD layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2, and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g. to distinguish between x-rays and MeV electrons in our experiment.Comment: 6 pages, 6 figure

    Hot Hypernuclear Matter in the Modified Quark Meson Coupling Model

    Get PDF
    Hot hypernuclear matter is investigated in an explicit SU(3) quark model based on a mean field description of nonoverlapping baryon bags bound by the self-consistent exchange of scalar σ,ζ\sigma, \zeta and vector ω,ϕ\omega, \phi mesons. The σ,ω\sigma, \omega mean fields are assumed to couple to the u,d-quarks while the ζ,ϕ\zeta, \phi mean fields are coupled to the s-quark. The coupling constants of the mean fields with the quarks are assumed to satisfy SU(6) symmetry. The calculations take into account the medium dependence of the bag parameter on the scalar fields σ,ζ\sigma, \zeta. We consider only the octet baryons N,Λ,Σ,ΞN,\Lambda,\Sigma,\Xi in hypernuclear matter. An ideal gas of the strange mesons KK and K∗K^{*} is introduced to keep zero net strangeness density. Our results for symmetric hypernuclear matter show that a phase transition takes place at a critical temperature around 180 MeV in which the scalar mean fields σ,ζ\sigma, \zeta take nonzero values at zero baryon density. Furthermore, the bag contants of the baryons decrease significantly at and above this critical temperature indicating the onset of quark deconfinement. The present results imply that the onset of quark deconfinement in SU(3) hypernuclear matter is much stronger than in SU(2) nuclear matter.Comment: LaTeX/TeX 11 pages (dfg3r.tex), 9 figures in eps forma

    Excluded Volume Effects in the Quark Meson Coupling Model

    Full text link
    Excluded volume effects are incorporated in the quark meson coupling model to take into account in a phenomenological way the hard core repulsion of the nuclear force. The formalism employed is thermodynamically consistent and does not violate causality. The effects of the excluded volume on in-medium nucleon properties and the nuclear matter equation of state are investigated as a function of the size of the hard core. It is found that in-medium nucleon properties are not altered significantly by the excluded volume, even for large hard core radii, and the equation of state becomes stiffer as the size of the hard core increases.Comment: 14 pages, revtex, 6 figure

    Neutron star properties in the quark-meson coupling model

    Get PDF
    The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark-meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting differences. This suggests the importance of quark structure effects in the baryons at high densities.Comment: 28 pages, 10 figures, to appear in Physical Review
    • …
    corecore