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ABSTRACT 

Over the last several decades, countries throughout the world have experienced an escalating 

and worrisome trend in the incidence of harmful algal blooms (HABs).  A concern is that highly 

potent algal toxins might be retained in the treated water, posing a threat to human health. 

Seawater contaminated with saxitoxins, domoic acid, okadaic acid, and brevetoxins was 

desalinated using small (<100 mL capacity) reverse osmosis and distillation equipment.  

Analyses of desalinated water samples indicated efficient removal of the four toxins to greater 

than 99%, except brevetoxins for which some carryover was observed during distillation. 

Hypochlorite concentrations of 4 ppm or higher were sufficient to react with all of the saxitoxins, 

domoic acid and okadaic acid in the samples that contained initial toxin concentrations up to 

1,250 ng.mL-1 . Brevetoxins appeared to be unaffected in experiments in which the toxins were 

exposed to up to 30 ppm hypochlorite in seawater at 35 °C for 60 min. These results and their 

implications in terms of desalination plant design and operation are discussed. 

 

Abbreviations 

LC   Liquid chromatography 

MS  Mass spectrometry 

ELISA  Enzyme-linked immunosorbent assay 

STX  Saxitoxin 

PSP  Paralytic shellfish poisoning 

ASP  Amnesic shellfish poisoning 

DSP  Diarrhetic shellfish poisoning 

NSP  Neurotoxic shellfish poisoning 

RO   Reverse osmosis 

MSF  Multistage flash evaporation



 3 

 Introduction 
 

An emerging threat to the desalination industry is the increasing occurrence of harmful algal 

blooms (HABs), commonly known as red tides. These microscopic algae can proliferate to form 

widespread high concentrations of cell mass.  Although algal blooms take many forms and have 

diverse impacts [1] , there are two general categories.  Non-toxic but high biomass blooms, and 

toxic HABs that can have a low or high biomass.  One potential effect of high biomass HABs on 

desalination plants is that the cells can restrict flow by clogging filters, but other impacts include 

fouling of surfaces due to particulate and dissolved organic materials that can also compromise 

the integrity of reverse osmosis (RO) membranes.  Toxic HABs result from the potential of 

certain bloom-forming algal species to produce potent toxins which can cause morbidity and 

mortality in humans, marine mammals, fish, or other animals exposed to the toxins during food 

web transfer.  The fate of HAB toxins during desalination treatment has only recently been 

recognized as a concern as the high potency of some of these compounds and their varied 

chemical structures and volatility suggest that some might persist in desalinated water, posing a 

threat to human health [2].  

 Reliable data that could provide an estimate of this threat has not been published due to the 

intermittent occurrence of algal blooms and a general absence of routine testing for algal toxins 

with sensitive analytical procedures. Also, desalination plants differ one from another in details 

of their design and operation so that broad conclusions based on industrial-scale observations 

may be unreliable. Alternatively, useful data can be obtained from relatively small-scale 

laboratory experiments in which the general conditions involved in desalination are simulated. 

Rather than rely on the occasional occurrence of natural blooms a variety of toxins with diverse 

molecular properties can be studied with a wide range of concentrations.  
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 The toxins in this study represent four of the most potent and well-characterized groups of HAB 

toxins known from studies of shellfish poisoning (Fig. 1). The most potent of the HAB toxins are 

the saxitoxins which are responsible for paralytic shellfish poisoning (PSP).  There are more 

than 30 identified congeners in nature [3] with different specific toxicities.  Saxitoxin is the most 

toxic low molecular weight marine compound currently known [4] and is among the most potent 

natural poisons.  They are heat stable with molecular weights in the range 250-500 daltons, and 

thus should be excluded by desalination with reverse osmosis (RO) and distillation. Outbreaks 

of PSP result in more than 2,000 illnesses worldwide each year, with a 5–10% mortality rate 

(Hallegraeff, 2003).  Saxitoxins also have adverse effects on marine wildlife that can cause 

mortalities among fish, marine mammal and seabird populations [5]. 

Domoic acid is produced by some diatoms of the genus Pseudo-nitzschia [6]. Its specific 

toxicity is relatively low compared to saxitoxin.  Cultured blue mussels (Mytilus edilus) from 

Prince Edward Island, Canada [7] contaminated with domoic acid poisoned 107 people and 

resulted in three fatalities.  Domoic acid is soluble in water, non-volatile, and heat stable with a 

molecular weight of 312 daltons [8], so it should be efficiently excluded by desalination 

processes. 

Okadaic acid and the dinophysistoxins, DTX1 and DTX2, cause gastrointestinal distress, as 

part of a syndrome known as diarrhetic shellfish poisoning (DSP) [9].  In addition, okadaic acid 

has been reported to be a tumor promoter [10].  Okadaic acid and dinophysistoxins are 

produced by some species of the dinoflagellate genus Prorocentrum [11] and most commonly 

by some Dinophysis species.  Although okadaic acid is a polyether, the molecule has a carboxyl 

group making it slightly soluble in water.  With a molecular weight of 805 daltons it is non-volatile 

and heat stable and should be removed by intact RO membranes and by distillation. 
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Brevetoxins are lipid soluble polyethers with no charged groups [12].  They have molecular 

weights around 900 daltons and should be retained by properly functioning RO membranes.  

Brevetoxins have not been fatal to humans but cause a condition known as neurotoxic shellfish 

poisoning (NSP).  The effects of brevetoxins on human health are well documented along the 

western coast of Florida in the U.S., where severe, nearly annual, red tides caused by the 

dinoflagellate Karenia brevis release large amounts of aerosolized brevetoxins into the air when 

the fragile cells are broken in breaking waves at the water’s edge [13].  This aerosolization 

characteristic may result in carry-over in a multistage flash evaporation (MSF) desalination 

plant.  

An important aspect of desalination is the pretreatment of intake water. Chemical 

treatments such as chlorination are generally used to kill microorganisms. [14].  However, little is 

known about the effects of chlorination on HAB toxins.  Nicholson et al (2003) [15] showed that 

hypochlorite can detoxify saxitoxins, but their study did not include other marine HAB toxins.  

Here we examine the fate of the four most prevalent marine HAB toxins during desalination and 

hypochlorite treatment using laboratory cultures, purified toxins, and small-scale laboratory 

apparatus.  The implications of our results are then discussed in the context of desalination 

plant operation that could be implemented to mitigate effects of algal blooms. 

 

Insert  Fig 1 

 

 2. Materials and Methods 

 

2.1. Toxins.  
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The four toxins in this study were chosen because they are the most common HAB toxins 

and exhibit a wide range of solubility and molecular size. They were also available in adequate 

quantities for the laboratory experiments, together with their respective antibodies and 

conjugates for quantitative analyses by ELISA.  

As a source of PSP toxins, a contaminated seawater sample was obtained from a 200 L 

culture of Alexandrium tamarense.  Cells were harvested by filtration through Nitex 20 cloth, 

followed by centrifugation of the concentrate.  Saxitoxin and neosaxitoxin were found in the 

supernatant fluid (120 mL) in approximately equal proportions. This solution contained 1.2 mg of 

the mixed PSP toxins and was subsequently spiked with domoic acid (2.0 mg) and okadaic acid 

(0.5 mg) and used for the RO and distillation experiments.  It is hereafter referred to as the 

‘multiple toxin seawater’ sample. Domoic acid was purchased from BioVectra Inc., Prince 

Edward Island, Canada and okadaic acid was purchased from LC Laboratories, Boston MS. 

USA.  The source of brevetoxins was the supernatant fluid (600 mL) obtained by growing a 

laboratory culture of Karenia brevis.  After sonication and centrifugation the solution contained 

900 ng mL-1 of brevetoxins, the predominant toxin being PbTx-2. 

 

2.2. Desalination apparatus 

A small reverse osmosis desalination unit (Katadyne. RO6) was purchased from West 

Marine Inc. and is sold as emergency equipment for use in life-boats.  The polyamide SW 30 

membrane is custom made for Katadyne by Dow FilmTec.  Pressure was provided with a 

manually operated pump as part of the unit.  The volume on the seawater side was 75 mL and 

when pumped normally from seawater (salinity; 25 g L-1) 150 mL was produced in 10 min. with a 

salinity of 0.7 g L-1 (97.2% desalination).  A glass micro-distillation apparatus was purchased 
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from Laboy, Beijing, China.  The distillation flask had a maximum capacity of 50 mL and 10 mL 

for each of the three collection vessels.  From 30 mL of the spiked seawater three 4 mL 

fractions were collected. 

 

2.3. Analytical methods 

For saxitoxin, domoic acid, and okadaic acid analyses, an indirect competitive ELISA 

procedure was used.  Polyclonal antibodies and toxin-BSA (bovine serum albumin) conjugates 

were obtained from Jellett Rapid Testing Ltd and calibration standards were purchased from the 

National Research Council of Canada.  Wells were coated with toxin conjugates.  The sample or 

standard was then added to the wells together with rabbit polyclonal anti-toxin and incubated for 

one hour at 37°C.  Rabbit antibodies were detected using goat anti-rabbit antibody with 

conjugated horseradish peroxidase (GAR-HRP).  Incubation was for one hour at 37 oC followed 

by washing five times with PBS.  The enzyme substrate was o-phenylenediamine (OPD) and 

hydrogen peroxide with incubation at room temperature for 5 min.  Optical densities at 490 nm 

were measured with a microtitre plate reader and plotted with the Soft Max Pro program.  The 

ELISA method according to Naar et al. (2002) [16] was used for analysis of brevetoxins. 

2.4. Experiments with hypochlorite solutions. 

Preliminary experiments were conducted to investigate the effect of hypochlorite on the 

toxins using ELISA to analyze solutions after incubation with different concentrations of 

hypochlorite.  A fresh commercial solution of chlorine bleach had an indicated concentration of 

6% hypochlorite from which a working solution of 60 mg L-1 was prepared by dilution 1:1,000 in 

seawater (salinity 45 g L-1).  Dilution series were prepared in which hypochlorite concentrations 
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decreased by a factor of two at each step.  Three separate toxin solutions were prepared in 

seawater, each containing 2,500 ng mL-1 of STX.2HCl mL-1, domoic acid, or okadaic acid.  An 

equal volume of each toxin solution was added to the different hypochlorite solutions in the 

series so that 1,250 ng mL-1 of toxin was exposed to hypochlorite at different concentrations and 

incubated for 10 min at 37°C. Preliminary experiments had shown that the tests functioned 

normally with up to 30 ppm hypochlorite having no detectable effect on the antibodies or on the 

toxin bound to the microtiter plates. Experiments with brevetoxins were conducted separately 

and toxin concentrations are given with the ELISA results.  

In addition to ELISA, LC-MS/MS analyses were conducted to confirm degradation of toxins in 

hypochlorite solutions and to look for degradation products.  An Agilent model 1100 HPLC 

coupled to an AB-SCIEX API-4000 triple quadrupole mass spectrometer (Waltham MA. USA) 

equipped with a TurboSpray® interface was used.  The HPLC included an in-line degasser, 

binary pump, refrigerated autosampler and temperature-controlled column oven.  Saxitoxins 

were analyzed with a TSK-Gel Amide-80 column (250 mm × 2 mm i.d., 5 µm) (Tosoh 

Bioscience LLC, Montgomeryville, PA, USA) at 40°C [17].  An isocratic mobile phase was used 

with 35% solvent A (water with 2.0 mM ammonium formate, and 3.6 mM formic acid) and 65% 

solvent B (95% acetonitrile) at a flow rate of 0.2 mL min-1.  Domoic and okadaic acids were 

analyzed using a Synergi Polar-RP column (50 mm × 2mm i.d., 2 µm) (Phenomenex, Torrance, 

CA, USA) maintained at 40°C.  The mobile phase was comprised of solvent A (water) and 

solvent B (95% acetonitrile) both with 2.0 mM ammonium formate and 50 mM formic acid at a 

flow rate of 0.2 mL min-1.  The run started with an isocratic period of 5 min at 100% A, followed 

by a gradient to 100% B over 15 min, a hold at 100% B for 5 min. After returning to initial 

conditions a re-equilibration time of 13 min was used.  Samples were prepared by diluting 50 µL 

of standard toxins in 450 µL fresh seawater with either 0 or 10 ppm hypochlorite.  The final 
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concentrations of saxitoxin, domoic acid and okadaic acid were 2.0, 10.0, and 1.4 µg mL-1, 

respectively.  Another experiment with a higher concentration of STX (25 µg mL-1) was also 

conducted in an effort to find degradation products.  Seawater with 10 ppm hypochlorite solution 

diluted to the same extent was used as a blank control. All of these samples were heated in an 

oven at 37°C for 10 min before analysis.  

 

3. Results 

3.1. Desalination experiments with PSP, ASP, and DSP toxins. 

The seawater sample (120 mL) containing high concentrations of PSP, ASP, and DSP toxins 

was prepared as described above in section 2.1.  In order to simulate seawater that would occur 

in warm waters it was necessary to add sea salt (Instant Ocean TM) to increase the salt 

concentration to 37-45 g L-1.  Initial toxin concentrations were:  saxitoxins at 10,300 ng mL-1, 

domoic acid at 17,000 ng mL-1, and okadaic acid at 400 ng mL-1. 

 

3.1.1. Desalination by reverse osmosis (RO) 

 Preliminary experiments with the RO unit showed the volume of seawater required to fill the 

apparatus was 75 mL A greater volume was necessary to allow recycling through the seawater 

intake and outlet tubes (Fig S2) from a reservoir and this was 120 mL. This minimum volume 

allowed high toxin concentrations to be tested. In a second experiment a sample was diluted to 

avoid the need to recycle and provide more typical natural toxin concentrations.  The toxin 

concentrations were reduced to 512 ng mL-1 for saxitoxins, 650 ng mL-1 for domoic acid, and 20 
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ng mL-1 for okadaic acid. The volume of collected desalinated water was limited to 5 mL in order 

to avoid significantly increasing concentrations of salt and toxins in the seawater.  Although the 

salt concentration of the permeate (i.e., treated) sample in the first experiment was 2.5 g L-1, 

which represented a desalination efficiency of only 93%, toxin elimination was greater than 99% 

(Table 1). 

Insert Table 1 

 

Toxin concentrations in the first RO desalinated sample were  61 ng mL-1 for saxitoxins and 

165 ng mL-1 for domoic acid.  Okadaic acid was below the limit of detection (2 ng mL-1) for the 

assay. This means that at least 99.7% of the okadaic acid was excluded by the RO membrane. 

The 0.60% carry-over of saxitoxins and 0.96% for domoic acid indicated that 99.4% of the 

saxitoxins and 99.0% of the domoic acid were excluded by the RO membrane (Table 1). 

For the repeat RO experiment the seawater salt concentration was similar to that in the first 

experiment, but desalination was much more efficient without recycling (Table 1. PSP2 and 

ASP2). Also, the initial toxin concentrations were considerably lower as stated above. After 

desalination the salt concentration was 0.28 g L-1 compared to 2.5 g L-1 in the first experiment. 

Elimination of saxitoxins was at least 99.6% and better than 99.2% for domoic acid. 

Insert Table 2 

3.1.2. Desalination by distillation 

Three consecutive 5 mL samples of distillate were collected from an initial volume of 30 mL 

of the multiple toxin seawater sample containing PSP, ASP, and DSP toxins in the boiling flask.  
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The salinity of the first fraction was 0.5 g L-1 and for subsequent fractions 0.2 g L-1.  None of the 

toxins were detected by ELISA indicating negligible carry-over by distillation (Table 2). 

 

3.2. NSP toxins (Brevetoxins) 

For the first experiments with RO and distillation the initial sample in seawater (600 mL) 

contained 900 ng mL-1 PbTx-2 and PbTx-3.  The toxic seawater sample was prepared from a 

flask culture of Karenia brevis with 25 x 106 cells L-1 and 40 pg cell-1.  In natural blooms cell 

densities often occur within the range 0.1 to 5 x106 cells L-1 and occasionally up to 100 x 106 

cells L-1. 

 

3.2.1. Desalination by reverse osmosis 

The salinity of the sample was 32.5 g L-1.  After desalination, salinity of the permeate was 

0.25 g L-1 which represents 99.2% elimination of salt.  No brevetoxins were detected in the 

permeate.  With a sensitivity of 1ng/mL toxin elimination was, therefore, at least 99.9% (Table 

1). 

 

3.2.2. Desalination by distillation 

With an initial volume of 30 mL in the distillation flask, three consecutive samples each of 

4 mL were collected and labeled Dist1, Dist2, and Dist3.  The maximum temperature in the flask 

was 104 oC. The final brine volume after distillation was 18 mL from the original 30 mL.  Dist1 
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contained 42 ng, Dist2 102 ng, and Dist3 32 ng making the total amount of toxin that distilled 

over 176 ng in a combined volume of 12 mL.  This is shown in Table 2 as the average of the 

three fractions (15 ng mL-1).  The total carry-over of toxin was 176 ng out of the initial amount of 

27,000 ng in the distillation flask and represents 0.65%.  Two repeat experiments were 

performed (A and B in Table 2) for which 1.7% and 2.6%, respectively, of the initial brevetoxins 

in the distillation flask were found in the (omitted freshwater) distillates. 

3.3 Effects of hypochlorite 

Data from experiments in which the four HAB toxins were exposed to hypochlorite 

concentrations up to 30 ppm in seawater at 35 0C for between 10 and 60 min are summarized in 

Figure 2.  Measurements with ELISA assays clearly showed that hypochlorite concentrations of 

4 ppm or higher were sufficient to degrade all of the saxitoxin, domoic acid, and okadaic acid in 

the samples that contained initial toxin concentrations up to 1,250 ng mL-1 (Fig 2).  Domoic acid 

was the most sensitive of the four toxins requiring only 1 ppm hypochlorite.  Brevetoxins 

appeared to be unaffected in experiments in which the toxins at two different concentrations 

were exposed to up to 30 ppm hypochlorite in seawater at 35 oC for 60 min. The low toxin 

concentration contained PbTx-3 at 3 ng mL-1.  The higher concentration (approx. 300 ng mL-1) 

consisted of a mixture of brevetoxins in a sonicated and filtered culture of Karenia brevis.  

LC-MS/MS analyses were also performed, using the very sensitive selected reaction 

monitoring (SRM) mode, on seawater samples spiked with saxitoxin, domoic acid and okadaic 

acid before and after a 10 min reaction with 10 ppm hypochlorite.  These toxins were no longer 

detectable after the reaction (<1% of original signal without hypochlorite).  Full Q1 scans, neutral 

loss scans and precursor scans were used to try to detect any degradation products.  No 

products could be detected with saxitoxin, even when higher concentrations were used.  
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Reactions in distilled water were also monitored in case the seawater was causing suppression 

of signals, but no products were detected in that case either.  For domoic acid, one significant 

product comparable in concentration to the original toxin was detected.  It had a molecular 

weight of 217 and gave an MS/MS product ion spectrum more complex than that of domoic 

acid.  Several new compounds were found in the okadaic acid reaction: these were two isomeric 

unknown compounds with molecular weight 947 and another four compounds with molecular 

weight 993. The isotope cluster pattern for the [M+H]+ ions indicated that these all contained 4 

chlorine atoms.  Product ion spectra of these compounds were quite different than that of 

okadaic acid. 

 

Insert Fig 2 

4.0. Discussion 

In regions where most freshwater is produced by desalination water quality has a high 

priority, especially for drinking water.  Other considerations are the cost of production and 

reliability of supply. A potential problem that is not so well understood, however, is that some 

phytoplankton blooms produce potent toxins that could contaminate drinking water. The results 

of our experiments indicate that the risk appears to be small.  Even with unusually high 

concentrations of four of the most dangerous shellfish toxins, their elimination by both reverse 

osmosis and by simple distillation was greater than 99% in the laboratory experiments.  

Although the data are limited to four HAB toxins (Fig. 1), they are the most likely to be present in 

blooms.  
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The results of the RO experiments (Table 1) indicate that all four toxins were effectively 

removed from the drinking water to greater than 99%, even with toxin concentrations that were 

unusually high.  Saxitoxins in the seawater sample were present at 10,340 ng mL-1.  An 

unusually dense bloom of 107 cells L-1 and toxin concentration of 40 pg cell-1 is equivalent to 

400 ng mL-1.  Therefore, the saxitoxin concentration was twenty five times that of an unusually 

high bloom concentration.  The concentration of the ASP toxin, domoic acid, was even higher at 

17,150 ng mL-1, which would be about forty times that of a dense bloom concentration.  For the 

repeat RO experiments with 512 ng mL-1 of saxitoxins and 650 ng mL-1 of domoic acid the toxin 

concentrations in the treated water were below the limit of detection.  This was also the case for 

the permeate concentrations of DSP and NSP toxins. 

 For the distillation experiments (Table 2) it was not necessary to repeat the saxitoxin, domoic 

acid, and okadaic acid treatments, because even with the high seawater toxin concentrations 

carry-over into the distillates were all below the limits of detection (Table 2). However, this was 

not so for the NSP distillation experiments where the average toxin removal was 98% indicating 

that 2% of the initial brevetoxins were found in the treated water.  The highest brevetoxin 

concentration was 954 ng mL-1, which could occur in a bloom of 108 cells L-1 with 10 pg cell-1.  

Because brevetoxins are known to be carried inland in Florida as aerosols from red tides [18] it 

was predictable that brevetoxins might contaminate drinking water prepared by a desalination 

process based on distillation. 

Risk assessments for the common groups of marine toxins to the shellfish industry were 

summarized recently [19].  Using these data the potential threat for desalinated water can be 

estimated.   
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The European Union Food Safety Authority has established three levels of risk 

characterization from epidemiological data [20]. 

1. Lowest observed adverse effect level (LOAEL). 

2.  No observed adverse effect level (NOAEL). 

3. Acute reference dose (ARfD).  The estimated amount that can be ingested 

in 24 h without health risk.  This is obtained from 1 and 2 by dividing by safety 

       factors.  It is the most appropriate risk level to apply to drinking water. 

For the saxitoxin group, the EU ARfD = 0.5 µg STX equiv kg-1 body weight.  For domoic acid, 

the ARfD = 100 µg kg-1 body weight, and for the okadaic acid group, the ARfD = 0.33 µg kg-1 

body weight.  For the brevetoxin group, an ARfD has not yet been established.  However the 

regulatory limit for shellfish is the same as for saxitoxins (80 µg STX equiv 100 g-1 shellfish 

tissue in the mouse bioassay) so we could assume an ARfD of 0.5 µg kg-1 body weight.  An 

algal bloom can often be seen as a discoloration (red tide) when cell concentrations exceed 105 

cells L-1.  A dense bloom may have 107 cells L-1, together with a high toxin concentration of 40 

pg cell-1.  Table 3 shows the volumes of drinking water that would have to be consumed in 24 h 

to exceed the EU ARfD for each of the toxins.  Considering the large volumes of water that 

would have to be consumed and the conservative ARfD values, the probability that anyone 

would suffer harmful effects from drinking water produced by desalination of HAB contaminated 

seawater is extremely low.  This is assuming desalination operations are consistently efficient.  

Given the possibility for failed membranes or other problems in the treatment process and 

recognizing the high potency of HAB toxins, it may well be prudent for desalination plants to 
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perform regular monitoring of phytoplankton and to initiate chemical treatment (chlorination) of 

intake water during a bloom of known toxic species.  

 

Insert  Table 3  

  

In many desalination plants, chlorine compounds such as sodium or calcium hypochlorite, 

chlorine gas or chlorine dioxide are added at approximately 1 ppm (with occasional pulses to 

higher concentrations) (K.P. Abraham, Pers. Comm.).  Chlorination is mainly used to partially 

sterilize input water by killing bacteria and to dissolve gelatinous polymers associated with 

bacteria.  The effect on algal cells and toxins has not, until recently, been a major consideration 

except to minimize restricted flow [21].  Hypochlorite is known to detoxify saxitoxins [15] but 

degradation products were not identified.  It is known that saxitoxins are readily oxidized to 

fluorescent derivatives when exposed to oxidizing agents [22] but none of these were detected 

in our experiments.  It has been reported that domoic acid is susceptible to oxidative conditions, 

particularly through UV-promoted reactions [23], but reactions with hypochlorite have not been 

reported to our knowledge. 

Our ELISA tests of reactions of the four toxins with various concentrations of hypochlorite 

indicated that only brevetoxins were unaffected by up to 30 ppm hypochlorite (Fig. 2).  LC-MS 

analyses confirmed that saxitoxin, domoic acid and okadaic acid were completely destroyed by 

exposure to 10 ppm hypochlorite at 37oC for 10 min.   

No decomposition products were detected by LC-MS for the saxitoxin-hypochlorite reaction, 

so it is probable that the saxitoxin was extensively degraded to low molecular weight 

substances, which are not likely to be toxic.  A significant, single unknown degradation product 
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of domoic acid with a molecular weight of 217 was detected by LC-MS indicating extensive 

structural changes.  As stated above, given the possibility for failed membranes or other 

unanticipated problems in the treatment process and recognizing the high potency of HAB 

toxins, it may well be prudent for desalination plants located in HAB-prone regions to perform 

regular monitoring of phytoplankton and to initiate chemical treatment (chlorination) of intake 

water during a bloom of known toxic species.   

Because HAB events are unpredictable and HAB toxins are not generally monitored at 

desalination plants, investigations of possible contamination of drinking water from large blooms 

has not been conducted by the industry.  A single pilot-scale study documented the removal of a 

domoic acid analog using RO [24].  Laboratory-scale experiments have provided an opportunity 

to investigate this problem using small volumes of seawater spiked with high concentrations of 

four of the major HAB toxins. Except for the brevetoxins toxin removal was in excess of 99% 

indicating that, even with an intense bloom, there is very little threat to human health if plant 

operations are efficient.  Given concerns about operational mistakes or breakdowns, however, a 

prudent step would be to establish an "adaptive" HAB toxin testing capability, guided by regular 

phytoplankton monitoring that would detect potentially toxic species, as well as those that are 

non-toxic, but that could clog filters or cause other problems due to high biomass effects.  This 

would provide plant managers with data to make decisions about chemical treatment, or 

ultimately, when to suspend production in the interests of safety.  

 

 

 



 18 

Acknowledgements 

We wish to acknowledge financial contributions by The Ministry of Environment and Water, 

United Arab Emirates. This work was also supported in part by the Woods Hole Center for 

Oceans and Human Health (NSF Grants OCE-0430724 and OCE-0911031; NIEHS Grant 

P50ES012742-01) and Effects of Inhaled Florida Red Tide Brevetoxins (NIH Grant P01 

ES010594-09). We also thank Allison Lenzi and Dave Kulis for their excellent technical support. 

.   

 

References 

 

[1] G.M. Hallegraeff, Harmful algal blooms: a global overview.  In: G.M. Hallegraeff, D.M. 

Anderson, A.D. Cembella, (Eds.), Manual on Harmful Marine Microalgae. Monographs on 

Oceanographic Methodology. UNESCO Publishing, Paris (2003) pp. 25–49. 

[2] D.A. Caron, M-E. Gurnee, E. Seubert, M.D.A. Howard, L. Darjany, A. Schnetzer, I. Cetinic,  

G. Filteau, P. Lauri, B. Jones, S. Trussell, Harmful algae and their potential impacts on 

desalination operations off southern California. Water Research 44 (2010) 385-416.  

[3] L.E. Llewellyn, Saxitoxin, a toxic marine natural product that targets a multitude of receptors. 

Natural Product Reports 23 (2006), 200–222. 

[4] E.J. Schantz, J.D. Mold, D.W. Stanger, J. Shavel, F.J. Riel, J.P. Bowden, J.M. Lynch, R.S. 

Wyler, B. Riegel, H. Sommer, Paralytic shellfish poison. VI. Procedure for the isolation and 

purification of the poison from toxic clam and mussel tissues. Journal of the American 

Chemical Society 79 (1957) 5230-5235. 



 19 

[5] S.E. Shumway, S.M. Allen, P.D. Boersma, Marine birds and harmful algal blooms: sporadic 

victims or under-reported events? Harmful Algae 2 (2003) 1–17. 

 

 

[6] S.S. Bates, V.L. Trainer, The ecology of harmful diatoms. In:  E. Grane´ li, J.T. Turner, 

(Eds.), Ecology of Harmful Algae. (2006) Springer, Berlin, pp. 81–93.  J.S. Ramsdell, D.M. 

Anderson, P.M. Glibert, HARRNESS,  Harmful Algal Research and Response: a National 

Environmental Science Strategy 2005–2015. Ecological Society of America, Washington, 

DC, 96 pp. 

[7] T.M. Perl, L. Bedard, T. Kosatsky, J.C. Hockin, E.C.D. Todd, L.A. McNutt, R.S. Remis, 

Amnesic shellfish poisoning:  a new clinical syndrome due to domoic acid. Canadian 

Diseases Weekly Report 16 (1990) 7–8. 

[8] J. Clayden, B. Read, K. Hebditch, Chemistry of domoic acid,  isodomoic acids, and their 

analogues. Tetrahedron 61 (2005) 5713–5724. 

 [9] M. Murata, M. Shimatani, Y. Sugitani, Y. Oshima,  T. Yasumoto, Isolation and structural 

elucidation of the causative toxin of the diarrhetic shellfish poisoning.  Bulletin of the 

Japanese Society of Scientific Fisheries 48 (1982), 549–552. 

[10] M. Suganuma, H. Fujiki, H. Suguri, S. Yoshizawa, M. Hirota, M. Nakayasu, M. Ojika, K. 

Wakamatsu, K. Yamada, T. Sugimura, Okadaic acid: an additional non-phorbol- 12-

tetradecanoate-13-acetate-type tumor promoter.  Proceedings of the National Academy of 

Sciences, United States of America 85 (1988) 1768–1771. 

 



 20 

[11] A.D. Cembella, Chemical ecology of eukaryotic microalgae in marine ecosystems. 

Phycologia 42 (2003) 420–447.   

[12] D.G. Baden, Brevetoxins: unique polyether dinoflagellate toxins. The FASEB Journal 3 

(1989), 1807–1817. 

[13] B. Kirkpatrick, L.E. Fleming, D. Squicciarini, L.C. Backer, R. Clark, W. Abraham, J. Benson, 

Y.S. Cheng, D. Johnson, R. Pierce, J. Zaias, G.D. Bossart, D.G. Baden, Literature review of 

Florida red tide: implications for human health effects. Harmful Algae 3 (2004), 99–115. 

[14] I. Sutzkover-Gutman, D. Hasson, Feed water pretreatment for desalination plants. 

Desalination 264 (2010) 289-297. 

[15] B.C. Nicholson, G.R. Shaw, J. Morall, P-J. Senogles, T.A. Woods, J. Papageorgiou, C. 

Kaprolos,  W. Wickramasinghe, B.C. Davis, G.K. Eaglesham, M.R. Moore, Chlorination for 

degrading saxitoxins (paralytic shellfish poisons) in water. Environmental Technology 24, 

(2003) 1341-1348. 

[16] J. Naar,  A. Bourdelais, C. Tomas, J. Kubanek, P.L. Whitney, I. Flewelling, K. Steidinger, J. 

Lancaster, D.G. Baden, A competitive ELISA to detect brevetoxins from Karenia brevis 

(formerly Gymnodinium breve) in seawater, shellfish, and mammalian body fluid. 

Environmental Health Perspectives 110 (2002) 179-185. 

[17] C. Dell' Aversano, P. Hess,  M.A. Quilliam,  Hydrophilic interaction liquid chromatography-

mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins.  J. 

Chromatogr. A 1081(2005) 190-201. 

[18] W.M. Abraham, A.J. Bouldelais, A. Ahmed,  I. Serebriakov, D.G. Baden,  Effects of inhaled 

brevetoxins in allergic airways: toxin-allergen interactions and pharmacologic intervention. 

Environ Health Perspect 113 (2005) 632-637. 



 21 

 

[19] T. Aune, Risk assessment of marine toxins. In Botana, L.M. (Ed.) Seafood and freshwater 

toxins. 2nd ed. (2008) CRC Press, Boca Raton. FL. 

[20] The EFSA Journal. 2009. Marine Biotoxins in Shellfish. 1-76. 

[21] S-H. Kim, J-S. Yoon, Optimization of microfiltration for seawater suffering from red-tide 

contamination. Desalination 182 (1995) 315-321. 

[23] E.R. Bandala, L. Brito, M. Pelaez, Degradation of domoic acid toxin by UV-promoted 

Fenton-like processes in seawater.  Desalination 245 (2009) 135–145 

 [22] M.A. Quilliam, M. Janecek, J.F. Lawrence, Characterization of the oxidation products of 

paralytic shellfish poisoning toxins by liquid chromatography/mass spectrometry.  Rapid 

communications in mass spectrometry 7 (1993) 482-487. 

 [24] SCWD. Seawater Reverse Osmosis Desalination Pilot Test Program Final Report.  City of 

Santa Cruz Water Department. April 2010.    

  

 

 

 

 

 

 


