527 research outputs found

    Novel properties of the Kohn-Sham exchange potential for open systems: application to the two-dimensional electron gas

    Full text link
    The properties of the Kohn-Sham (KS) exchange potential for open systems in thermodynamical equilibrium, where the number of particles is non-conserved, are analyzed with the Optimized Effective Potential (OEP) method of Density Functional Theory (DFT) at zero temperature. The quasi two-dimensional electron gas (2DEG) is used as an illustrative example. The main findings are that the KS exchange potential builds a significant barrier-like structure under slight population of the second subband, and that both the asymptotic value of the KS exchange potential and the inter-subband energy jump discontinuously at the one-subband (1S) -> two-subband (2S) transition. The results obtained in this system offer new insights on open problems of semiconductors, such as the band-gap underestimation and the band-gap renormalization by photo-excited carriers.Comment: 7 pages, 3 figures, uses epl.cls(included), accepted for publication in Europhysics Letter

    Development and assessment of uni- and multivariable flood loss models for Emilia-Romagna (Italy)

    Get PDF
    Flood loss models are one important source of uncertainty in flood risk assessments. Many countries experience sparseness or absence of comprehensive high-quality flood loss data, which is often rooted in a lack of protocols and reference procedures for compiling loss datasets after flood events. Such data are an important reference for developing and validating flood loss models. We consider the Secchia River flood event of January 2014, when a sudden levee breach caused the inundation of nearly 52km2 in northern Italy. After this event local authorities collected a comprehensive flood loss dataset of affected private households including building footprints and structures and damages to buildings and contents. The dataset was enriched with further information compiled by us, including economic building values, maximum water depths, velocities and flood durations for each building. By analyzing this dataset we tackle the problem of flood damage estimation in Emilia-Romagna (Italy) by identifying empirical uni- and multivariable loss models for residential buildings and contents. The accuracy of the proposed models is compared with that of several flood damage models reported in the literature, providing additional insights into the transferability of the models among different contexts. Our results show that (1) even simple univariable damage models based on local data are significantly more accurate than literature models derived for different contexts; (2) multivariable models that consider several explanatory variables outperform univariable models, which use only water depth. However, multivariable models can only be effectively developed and applied if sufficient and detailed information is available

    Flood loss reduction of private households due to building precautionary measures -- lessons learned from the Elbe flood in August 2002

    Get PDF
    Building houses in inundation areas is always a risk, since absolute flood protection is impossible. Where settlements already exist, flood damage must be kept as small as possible. Suitable means are precautionary measures such as elevated building configuration or flood adapted use. However, data about the effects of such measures are rare, and consequently, the efficiency of different precautionary measures is unclear. To improve the knowledge about efficient precautionary measures, approximately 1200 private households, which were affected by the 2002 flood at the river Elbe and its tributaries, were interviewed about the flood damage of their buildings and contents as well as about their precautionary measures. The affected households had little flood experience, i.e. only 15% had experienced a flood before. 59% of the households stated that they did not know, that they live in a flood prone area. Thus, people were not well prepared, e.g. just 11% had used and furnished their house in a flood adapted way and only 6% had a flood adapted building structure. Building precautionary measures are mainly effective in areas with frequent small floods. But also during the extreme flood event in 2002 building measures reduced the flood loss. From the six different building precautionary measures under study, flood adapted use and adapted interior fitting were the most effective ones. They reduced the damage ratio for buildings by 46% and 53%, respectively. The damage ratio for contents was reduced by 48% due to flood adapted use and by 53% due to flood adapted interior fitting. The 2002 flood motivated a relatively large number of people to implement private precautionary measures, but still much more could be done. Hence, to further reduce flood losses, people's motivation to invest in precaution should be improved. More information campaigns and financial incentives should be issued to encourage precautionary measures

    Flood loss models and risk analysis for private households in can Tho City, Vietnam

    Get PDF
    Vietnam has a long history and experience with floods. Flood risk is expected to increase further due to climatic, land use and other global changes. Can Tho City, the cultural and economic center of the Mekong delta in Vietnam, is at high risk of flooding. To improve flood risk analyses for Vietnam, this study presents novel multi-variable flood loss models for residential buildings and contents and demonstrates their application in a flood risk assessment for the inner city of Can Tho. Cross-validation reveals that decision tree based loss models using the three input variables water depth, flood duration and floor space of building are more appropriate for estimating building and contents loss in comparison with depth-damage functions. The flood risk assessment reveals a median expected annual flood damage to private households of US$3340 thousand for the inner city of Can Tho. This is approximately 2.5%of the total annual income of households in the study area. For damage reduction improved flood risk management is required for the Mekong Delta, based on reliable damage and risk analyses

    Needed: a systems approach to improve flood risk mitigation through private precautionary measures

    Get PDF
    Private precautionary measures play an increasingly important role in flood risk management. The degree to which private precautionary measures mitigate flood risk depends mainly on the type of measure (and how effective it is) and how frequently and successfully it is implemented. These aspects are influenced by a complex interaction of physical and socio-economic processes, which makes the assessment and the prediction of the mitigation of flood risk via private precautionary measures a challenge. This paper provides an overview of factors and processes that influence the implementation and effectiveness of private precaution in mitigating flood risk, underpinning it with highlights from international examples. We recommend private precautionary measures for further use to improve flood risk mitigation, but stress that they need to be considered and implemented through a holistic systems approach to maximize their effectiveness

    Estimating parameter values of a socio-hydrological flood model

    Get PDF
    Socio-hydrological modelling studies that have been published so far show that dynamic coupled human-flood models are a promising tool to represent the phenomena and the feedbacks in human-flood systems. So far these models are mostly generic and have not been developed and calibrated to represent specific case studies. We believe that applying and calibrating these type of models to real world case studies can help us to further develop our understanding about the phenomena that occur in these systems. In this paper we propose a method to estimate the parameter values of a socio-hydrological model and we test it by applying it to an artificial case study. We postulate a model that describes the feedbacks between floods, awareness and preparedness. After simulating hypothetical time series with a given combination of parameters, we sample few data points for our variables and try to estimate the parameters given these data points using Bayesian Inference. The results show that, if we are able to collect data for our case study, we would, in theory, be able to estimate the parameter values for our socio-hydrological flood model

    Multi-variate analyses of flood loss in Can Tho city, Mekong delta

    Get PDF
    Floods in the Mekong delta are recurring events and cause substantial losses to the economy. Sea level rise and increasing precipitation during the wet season result in more frequent floods. For effective flood risk management, reliable losses and risk analyses are necessary. However, knowledge about damaging processes and robust assessments of flood losses in the Mekong delta are scarce. In order to fill this gap, we identify and quantify the effects of the most important variables determining flood losses in Can Tho city through multi-variate statistical analyses. Our analysis is limited to the losses of residential buildings and contents. Results reveal that under the specific flooding characteristics in the Mekong delta with relatively well-adapted households, long inundation durations and shallow water depths, inundation duration is more important than water depth for the resulting loss. However, also building and content values, floor space of buildings and building quality are important loss-determining variables. Human activities like undertaking precautionary measures also influence flood losses. The results are important for improving flood loss modelling and, consequently, flood risk assessments in the Mekong delta

    Flood-risk mapping: contributions towards an enhanced assessment of extreme events and associated risks

    Get PDF
    Currently, a shift from classical flood protection as engineering task towards integrated flood risk management concepts can be observed. In this context, a more consequent consideration of extreme events which exceed the design event of flood protection structures and failure scenarios such as dike breaches have to be investigated. Therefore, this study aims to enhance existing methods for hazard and risk assessment for extreme events and is divided into three parts. In the first part, a regionalization approach for flood peak discharges was further developed and substantiated, especially regarding recurrence intervals of 200 to 10 000 years and a large number of small ungauged catchments. Model comparisons show that more confidence in such flood estimates for ungauged areas and very long recurrence intervals may be given as implied by statistical analysis alone. The hydraulic simulation in the second part is oriented towards hazard mapping and risk analyses covering the whole spectrum of relevant flood events. As the hydrodynamic simulation is directly coupled with a GIS, the results can be easily processed as local inundation depths for spatial risk analyses. For this, a new GIS-based software tool was developed, being presented in the third part, which enables estimations of the direct flood damage to single buildings or areas based on different established stage-damage functions. Furthermore, a new multifactorial approach for damage estimation is presented, aiming at the improvement of damage estimation on local scale by considering factors like building quality, contamination and precautionary measures. The methods and results from this study form the base for comprehensive risk analyses and flood management strategies

    Is flow velocity a significant parameter in flood damage modelling?

    Get PDF
    Flow velocity is generally presumed to influence flood damage. However, this influence is hardly quantified and virtually no damage models take it into account. Therefore, the influences of flow velocity, water depth and combinations of these two impact parameters on various types of flood damage were investigated in five communities affected by the Elbe catchment flood in Germany in 2002. 2-D hydraulic models with high to medium spatial resolutions were used to calculate the impact parameters at the sites in which damage occurred. A significant influence of flow velocity on structural damage, particularly on roads, could be shown in contrast to a minor influence on monetary losses and business interruption. Forecasts of structural damage to road infrastructure should be based on flow velocity alone. The energy head is suggested as a suitable flood impact parameter for reliable forecasting of structural damage to residential buildings above a critical impact level of 2 m of energy head or water depth. However, general consideration of flow velocity in flood damage modelling, particularly for estimating monetary loss, cannot be recommended
    • …
    corecore