229 research outputs found

    Collapse of Double-Walled Carbon Nanotube Bundles under Hydrostatic Pressure

    Get PDF
    We use classical molecular dynamics simulations to study the collapse of single (SWNT) and double-walled (DWNT) carbon nanotube bundles under hydrostatic pressure. The collapse pressure (pc) varies as 1/R^3, where R is the SWNT radius or the DWNT effective radius. The bundles show ~ 30% hysteresis and the hexagonally close packed lattice is completely restored on decompression. The pc of DWNT is found to be close to the sum of its values for the inner and the outer tubes considered separately as SWNT, demonstrating that the inner tube supports the outer tube and that the effective bending stiffness of DWNT, D(DWNT) ~ 2D(SWNT) . We use an elastica formulation to derive the scaling and the collapse behavior of DWNT and multi-walled carbon nanotubes.Comment: This paper has been accepted for publication in Physical Review B. After publication, it will be available at http://prb.aps.org

    An Analysis of Solution Properties of the Graph Coloring Problem

    Get PDF
    This paper concerns the analysis of solution properties of the Graph Coloring Problem. For this purpose, we introduce a property based on the notion of representative sets which are sets of vertices that are always colored the same in a set of solutions. Experimental results on well-studied DIMACS graphs show that many of them contain such sets and give interesting information about the diversity of the solutions. We also show how such an analysis may be used to improve a tabu search algorithm

    Scatter Search for Graph Coloring

    Get PDF
    In this paper, we present a first scatter search approach for the Graph Coloring Problem (GCP). The evolutionary strategy scatter search operates on a set of configurations by combining two or more elements. New configurations are improved before replacing others according to their quality (fitness), and sometimes, to their diversity. Scatter search has been applied recently to some combinatorial optimization problems with promising results. Nevertheless, it seems that no attempt of scatter search has been published for the GCP. This paper presents such an investigation and reports experimental results on some wellstudied DIMACS graphs

    Mechanics of Reversible Unzipping

    Full text link
    We study the mechanics of a reversible decohesion (unzipping) of an elastic layer subjected to quasi-static end-point loading. At the micro level the system is simulated by an elastic chain of particles interacting with a rigid foundation through breakable springs. Such system can be viewed as prototypical for the description of a wide range of phenomena from peeling of polymeric tapes, to rolling of cells, working of gecko's fibrillar structures and denaturation of DNA. We construct a rigorous continuum limit of the discrete model which captures both stable and metastable configurations and present a detailed parametric study of the interplay between elastic and cohesive interactions. We show that the model reproduces the experimentally observed abrupt transition from an incremental evolution of the adhesion front to a sudden complete decohesion of a macroscopic segment of the adhesion layer. As the microscopic parameters vary the macroscopic response changes from quasi-ductile to quasi-brittle, with corresponding decrease in the size of the adhesion hysteresis. At the micro-scale this corresponds to a transition from a `localized' to a `diffuse' structure of the decohesion front (domain wall). We obtain an explicit expression for the critical debonding threshold in the limit when the internal length scales are much smaller than the size of the system. The achieved parametric control of the microscopic mechanism can be used in the design of new biological inspired adhesion devices and machines

    Assessment of flomoxef combined with amikacin in a hollow-fibre infection model for the treatment of neonatal sepsis in low- and middle-income healthcare settings.

    Get PDF
    BACKGROUND: Annual mortality from neonatal sepsis is an estimated 430 000-680 000 infants globally, most of which occur in low- and middle-income countries (LMICs). The WHO currently recommends a narrow-spectrum β-lactam (e.g. ampicillin) and gentamicin as first-line empirical therapy. However, available epidemiological data demonstrate high rates of resistance to both agents. Alternative empirical regimens are needed. Flomoxef and amikacin are two off-patent antibiotics with potential for use in this setting. OBJECTIVES: To assess the pharmacodynamics of flomoxef and amikacin in combination. METHODS: The pharmacodynamic interaction of flomoxef and amikacin was assessed in chequerboard assays and a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment. The combination was further assessed in HFIM experiments mimicking neonatal plasma exposures of clinically relevant doses of both drugs against five Enterobacterales isolates with a range of flomoxef/amikacin MICs. RESULTS: Flomoxef and amikacin in combination were synergistic in bacterial killing in both assays and prevention of emergence of amikacin resistance in the HFIM. In the HFIM assessing neonatal-like drug exposures, the combination killed 3/5 strains to sterility, (including 2/5 that monotherapy with either drug failed to kill) and failed to kill the 2/5 strains with flomoxef MICs of 32 mg/L. CONCLUSIONS: We conclude that the combination of flomoxef and amikacin is synergistic and is a potentially clinically effective regimen for the empirical treatment of neonatal sepsis in LMIC settings and is therefore suitable for further assessment in a clinical trial

    The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules

    Get PDF
    The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues

    Prioritising between direct observation of therapy and case-finding interventions for tuberculosis: use of population impact measures

    Get PDF
    BACKGROUND: Population impact measures (PIMs) have been developed as tools to help policy-makers with locally relevant decisions over health risks and benefits. This involves estimating and prioritising potential benefits of interventions in specific populations. Using tuberculosis (TB) in India as an example, we examined the population impact of two interventions: direct observation of therapy and increasing case-finding. METHODS: PIMs were calculated using published literature and national data for India, and applied to a notional population of 100 000 people. Data included the incidence or prevalence of smear-positive TB and the relative risk reduction from increasing case finding and the use of direct observation of therapy (applied to the baseline risks over the next year), and the incremental proportion of the population eligible for the proposed interventions. RESULTS: In a population of 100 000 people in India, the directly observed component of the Directly Observed Treatment, Short-course (DOTS) programme may prevent 0.188 deaths from TB in the next year compared with 1.79 deaths by increasing TB case finding. The costs of direct observation are (in international dollars) I5960andofcasefindingareI5960 and of case finding are I4839 or I31702andI31702 and I2703 per life saved respectively. CONCLUSION: Increasing case-finding for TB will save nearly 10 times more lives than will the use of the directly observed component of DOTS in India, at a smaller cost per life saved. The demonstration of the population impact, using simple and explicit numbers, may be of value to policy-makers as they prioritise interventions for their populations

    Constrained sintering kinetics of 3YSZ films

    Get PDF
    This article was published in the Journal of the European Ceramic Society [© Elseview Ltd.] and the definitive version is available at: http://dx.doi.org/10.1016/j.jeurceramsoc.2011.05.0443YSZ green layers approximately 10 μm thick were screen-printed onto 3YSZ substrates and their constrained sintering kinetics were measured at 1100–1350 °C using an optical dilatometer. The densification rates of the same powder in the form of pellets and free-standing films were also measured. The constrained densification rate was greatly retarded compared with the free densification rate at a given temperature and density. The retardation increased with increasing density and temperature and could not be properly accounted for by existing theories of constrained sintering. As a result the apparent activation energy is much lower for constrained sintering (135 ± 20 kJ mol−1) than for free sintering (660 ± 30 kJ mol−1). It is proposed that this is because the constrained microstructure exhibits larger and more widely separated pores at the higher temperatures
    corecore