4,005 research outputs found
Increased plasma viscosity as a reason for inappropriate erythropoietin formation
The aim of this study was to examine whether altered plasma viscosity could contribute to the inappropriately low production rate of erythropoietin (EPO) observed in patients suffering from hypergammaglobulinemias associated with multiple myeloma or Waldenström's disease. We found that the EPO formation in response to anemia in these patients was inversely related to plasma viscosity. A similar inverse relationship between plasma viscosity and EPO production was seen in rats in which EPO formation had been stimulated by exchange transfusion and the plasma viscosity of which was thereby altered by using exchange solutions of different composition to alter plasma viscosity and thus whole blood viscosity independently from hematocrit. Raising the gammaglobulin concentration to approximately 40 mg/ml plasma in the rats almost totally blunted the rise in serum EPO levels despite a fall of the hematocrit to 20%. Determination of renal EPO mRNA levels by RNase protection revealed that the reductions in serum EPO levels at higher plasma viscosities were paralleled by reductions in renal EPO mRNA levels. Taken together, our findings suggest that plasma viscosity may be a significant inhibitory modulator of anemia-induced EPO formation. The increased plasma viscosity in patients with hypergammaglobulinemias may therefore contribute to the inappropriate EPO production, which is a major reason for the anemia developing in these patients
On the classification of type D spacetimes
We give a classification of the type D spacetimes based on the invariant
differential properties of the Weyl principal structure. Our classification is
established using tensorial invariants of the Weyl tensor and, consequently,
besides its intrinsic nature, it is valid for the whole set of the type D
metrics and it applies on both, vacuum and non-vacuum solutions. We consider
the Cotton-zero type D metrics and we study the classes that are compatible
with this condition. The subfamily of spacetimes with constant argument of the
Weyl eigenvalue is analyzed in more detail by offering a canonical expression
for the metric tensor and by giving a generalization of some results about the
non-existence of purely magnetic solutions. The usefulness of these results is
illustrated in characterizing and classifying a family of Einstein-Maxwell
solutions. Our approach permits us to give intrinsic and explicit conditions
that label every metric, obtaining in this way an operational algorithm to
detect them. In particular a characterization of the Reissner-Nordstr\"{o}m
metric is accomplished.Comment: 29 pages, 0 figure
Political institutions and debt crises
This paper shows that political institutions matter in explaining defaults on external and domestic debt obligations. We explore a large number of political and macroeconomic variables using a non-parametric technique to predict safety from default. The advantage of this technique is that it is able to identify patterns in the data that are not captured in standard probit analysis. We find that political factors matter, and do so in different ways for democratic and non-democratic regimes, and for domestic and external debt. In democracies, a parliamentary system or sufficient checks and balances almost guarantee the absence of default on external debt when economic fundamentals or liquidity are sufficiently strong. In dictatorships, high stability and tenure play a similar role for default on domestic debt
Inter-Coder Agreement for Computational Linguistics
This article is a survey of methods for measuring agreement among corpus annotators. It exposes the mathematics and underlying assumptions of agreement coefficients, covering Krippendorff's alpha as well as Scott's pi and Cohen's kappa; discusses the use of coefficients in several annotation tasks; and argues that weighted, alpha-like coefficients, traditionally less used than kappa-like measures in computational linguistics, may be more appropriate for many corpus annotation tasks—but that their use makes the interpretation of the value of the coefficient even harder. </jats:p
Modified differentials and basic cohomology for Riemannian foliations
We define a new version of the exterior derivative on the basic forms of a
Riemannian foliation to obtain a new form of basic cohomology that satisfies
Poincar\'e duality in the transversally orientable case. We use this twisted
basic cohomology to show relationships between curvature, tautness, and
vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad
Cohomological tautness for Riemannian foliations
In this paper we present some new results on the tautness of Riemannian
foliations in their historical context. The first part of the paper gives a
short history of the problem. For a closed manifold, the tautness of a
Riemannian foliation can be characterized cohomologically. We extend this
cohomological characterization to a class of foliations which includes the
foliated strata of any singular Riemannian foliation of a closed manifold
Probing the dynamics of quasicrystal growth using synchrotron live imaging
The dynamics of quasicrystal growth remains an unsolved problem in condensed
matter. By means of synchrotron live imaging, facetted growth proceeding by the
tangential motion of ledges at the solid-melt interface is clearly evidenced
all along the solidification of icosahedral AlPdMn quasicrystals. The effect of
interface kinetics is significant so that nucleation and free growth of new
facetted grains occur in the melt when the solidification rate is increased.
The evolution of these grains is explained in details, which reveals the
crucial role of aluminum rejection, both in the poisoning of grain growth and
driving fluid flow
Development of meat substitutes from filamentous fungi cultivated on residual water of Tempeh factories
In recent years, there has been an increased motivation to reduce meat consumption globally due to environmental and health concerns, which has driven the development of meat substitutes. Filamentous fungal biomass, commonly known as mycoprotein, is a potential meat substitute since it is nutritious and has filaments to mimic meat fibrils. The current study aimed to investigate the potential use of a cheap substrate derived from the food industry, i.e., residual water in a tempeh factory, for mycoprotein production. The type of residual water, nutrient supplementation, optimum conditions for biomass production, and characteristics of the mycoprotein were determined. The results showed that the residual water from the first boiling with yeast extract addition gave the highest mycoprotein content. The optimum growth condition was a pH of 4.5 and agitation of 125 rpm, and it resulted in 7.76 g/L biomass. The mycoprotein contains 19.44% (w/w) protein with a high crude fiber content of 8.51% (w/w) and a low fat content of 1.56% (w/w). In addition, the amino acid and fatty acid contents are dominated by glutamic acid and polyunsaturated fatty acids, which are associated with an umami taste and are considered healthier foods. The current work reveals that the residual boiling water from the tempeh factory can be used to produce high-quality mycoprotein.The authors wish to thank the innovative research grant of the Faculty of Agricultural Technology, Gadjah Mada University 3663/UN1/FTP.1.3/SET-D/KU/2022 for financial support of the project and the World Class Professor Program by the Directorate General of Higher Education, Research, and Technology, Ministry of Education, Culture, Research and Technology Republic of Indonesia 2965/E4/DT.04.03/2022 for the publication.info:eu-repo/semantics/publishedVersio
- …