16,502 research outputs found

    Response of single junction GaAs/GaAs and GaAs/Ge solar cells to multiple doses of 1 MeV electrons

    Get PDF
    A comparison of the radiation tolerance of MOCVD-grown GaAs cells and GaAs/Ge cells was undertaken using 1 MeV electrons. The GaAs/Ge cells are somewhat more tolerant of 1 MeV electron irradiation and more responsive to annealing than are the GaAs/GaAs cells examined in this study. However, both types of cells suffer a greater degradation in efficiency than has been observed in other recent studies. The reason for this is not certain, but it may be associated with an emitter thickness which appears to be greater than desired. The deep level transient spectroscopy (DLTS) spectra following irradiation are not significantly different for the GaAs/Ge and the GaAs/GaAs cells, with each having just two peaks. The annealing behavior of these peaks is also similar in the two samples examined. It appears that no penalty in radiation tolerance, and perhaps some benefit, is associated with fabricating MOCVD GaAs cells on Ge substrates rather than GaAs substrates

    Ten milliparsec-scale structure of the nucleus region in Centaurus A

    Full text link
    We present the results of a VLBI Space Observatory Programme (VSOP) observation of the subparsec structure in Centaurus A at 4.9 GHz. Owing to its proximity, our Centaurus A space-VLBI image is one of the highest spatial resolution images of an AGN ever made -- 0.01 pc per beam. The elongated core region is resolved into several components over 10 milli-arcseconds long (0.2 pc) including a compact component of brightness temperature 2.2x10^10K. We analyze the jet geometry in terms of collimation. Assuming the strongest component to be the core, the jet opening angle at ~ 5,000 r_s (Schwarzchild radii) from the core is estimated to be ~ 12 degree, with collimation of the jet to ~ 3 degree continuing out to ~ 20,000 r_s. This result is consistent with previous studies of the jet in M87, which favor MHD disk outflow models. Future space VLBI observations at higher frequencies will probably be able to image the collimation region, within 1,000 r_s of the center of Centaurus A, together with the accretion disk itself.Comment: 12 pages, 6 figures, accepted for publication in PASJ, Vol.57 No.6, VSOP special issu

    No roots, no fruits: Marcel Tanner's scholarly contribution, achievements in capacity building, and impact in global health

    Get PDF
    On 1 October 2022, Marcel Tanner celebrated his 70th birthday with his family and friends on the River Rhein in Basel. Trained in epidemiology (Ph.D.) and public health (MPH), Tanner devoted his entire working life to research, teaching, and capacity building. Indeed, he built up productive partnerships, fostered multinational consortia, served on numerous scientific and strategic advisory boards, and contributed measurably to improving people’s health and well-being. We systematically searched the Web of Science Core Collection to identify Tanner’s scholarly contribution and pursued an in-depth analysis of his scientific oeuvre including the main areas of research, pathogens, diseases, and health systems, and the geographical foci of his scholarly activities. Additionally, we examined Tanner’s impact on personal and institutional capacity building in the arena of global health. We also invited a handful of colleagues to describe their experiences while working with Marcel Tanner. What transpires is a considerable breadth and depth of peer-reviewed publications in tropical medicine; epidemiology, environmental, and occupational health; parasitology; and infectious diseases. More than a third of the 622 peer-reviewed articles, the first piece published in 1978, focused on various aspects of the protozoan parasite Plasmodium and the disease it causes: malaria. Tanner trained, taught, and inspired generations of students, scientists, and practitioners all over the world. His unique ability to bring people and institutions together to work in partnership is at the heart of an impactful career in global health

    Steady-state spin densities and currents

    Full text link
    This article reviews steady-state spin densities and spin currents in materials with strong spin-orbit interactions. These phenomena are intimately related to spin precession due to spin-orbit coupling which has no equivalent in the steady state of charge distributions. The focus will be initially on effects originating from the band structure. In this case spin densities arise in an electric field because a component of each spin is conserved during precession. Spin currents arise because a component of each spin is continually precessing. These two phenomena are due to independent contributions to the steady-state density matrix, and scattering between the conserved and precessing spin distributions has important consequences for spin dynamics and spin-related effects in general. In the latter part of the article extrinsic effects such as skew scattering and side jump will be discussed, and it will be shown that these effects are also modified considerably by spin precession. Theoretical and experimental progress in all areas will be reviewed

    Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe

    Full text link
    Chiral magnetic interactions induce complex spin textures including helical and conical spin waves, as well as particle-like objects such as magnetic skyrmions and merons. These spin textures are the basis for innovative device paradigms and give rise to exotic topological phenomena, thus being of interest for both applied and fundamental sciences. Present key questions address the dynamics of the spin system and emergent topological defects. Here we analyze the micromagnetic dynamics in the helimagnetic phase of FeGe. By combining magnetic force microscopy, single-spin magnetometry, and Landau-Lifschitz-Gilbert simulations we show that the nanoscale dynamics are governed by the depinning and subsequent motion of magnetic edge dislocations. The motion of these topologically stable objects triggers perturbations that can propagate over mesoscopic length scales. The observation of stochastic instabilities in the micromagnetic structure provides new insight to the spatio-temporal dynamics of itinerant helimagnets and topological defects, and discloses novel challenges regarding their technological usage

    A quasi-periodic oscillation in the blazar J1359+4011

    Get PDF
    The OVRO 40-m telescope has been monitoring the 15 GHz radio flux density of over 1200 blazars since 2008. The 15 GHz light curve of the flat spectrum radio quasar J1359+4011 shows a strong and persistent quasi-periodic oscillation. The time-scale of the oscillation varies between 120 and 150 days over a 4\sim4 year time span. We interpret this as the active galactic nucleus mass-scaled analog of low-frequency quasi-periodic oscillations from Galactic microquasars, or as evidence of modulation of the accretion flow by thermal instabilites in the "inner" accretion disc.Comment: 4 pages, 2 figures, 1 table. Accepted for publication in MNRAS Letter

    Exponentially Localized Magnetic Fields for Single-Spin Quantum Logic Gates

    Full text link
    An infinite array of parallel current-carrying wires is known, from the field of neutral particle optics, to produce an exponentially localized magnetic field when the current direction is antiparallel in adjacent wires. We show that a finite array of several tens of superconducting Nb nanowires can produce a peak magnetic field of 10mT that decays by a factor of 10^4 over a length scale of 500nm. Such an array is readily manufacturable with current technology, and is compatible with both semiconductor and superconducting quantum computer architectures. A series of such arrays can be used to individually address single single-spin or flux qubits spaced as little as 100nm apart, and can lead to quantum logic gate times of 5ns.Comment: 5 pages, incl. 4 figure

    Unconventional order-disorder phase transition in improper ferroelectric hexagonal manganites

    Full text link
    The improper ferroelectricity in YMnO3_3 and other related multiferroic hexagonal manganites are known to cause topologically protected ferroelectric domains that give rise to rich and diverse physical phenomena. The local structure and structural coherence across the ferroelectric transition, however, were previously not well understood. Here we reveal the evolution of the local structure with temperature in YMnO3_3 using neutron total scattering techniques, and interpret them with the help of first-principles calculations. The results show that, at room temperature, the local and average structures are consistent with the established ferroelectric P63cmP6_3cm symmetry. On heating, both local and average structural analyses show striking anomalies from 800\sim 800 K up to the Curie temperature consistent with increasing fluctuations of the order parameter angle. These fluctuations result in an unusual local symmetry lowering into a \textit{continuum of structures} on heating. This local symmetry breaking persists into the high-symmetry non-polar phase, constituting an unconventional type of order-disorder transition.Comment: 10 pages, 5 figure

    Second harmonic generation on incommensurate structures: The case of multiferroic MnWO4

    Full text link
    A comprehensive analysis of optical second harmonic generation (SHG) on an incommensurate (IC) magnetically ordered state is presented using multiferroic MnWO4 as model compound. Two fundamentally different SHG contributions coupling to the primary IC magnetic order or to secondary commensurate projections of the IC state, respectively, are distinguished. Whereas the latter can be described within the formalism of the 122 commensurate magnetic point groups the former involves a breakdown of the conventional macroscopic symmetry analysis because of its sensitivity to the lower symmetry of the local environment in a crystal lattice. Our analysis thus foreshadows the fusion of the hitherto disjunct fields of nonlinear optics and IC order in condensed-matter systems
    corecore