101 research outputs found

    Challenges and New Approaches to Proving the Existence of Muscle Synergies of Neural Origin

    Get PDF
    Muscle coordination studies repeatedly show low-dimensionality of muscle activations for a wide variety of motor tasks. The basis vectors of this low-dimensional subspace, termed muscle synergies, are hypothesized to reflect neurally-established functional muscle groupings that simplify body control. However, the muscle synergy hypothesis has been notoriously difficult to prove or falsify. We use cadaveric experiments and computational models to perform a crucial thought experiment and develop an alternative explanation of how muscle synergies could be observed without the nervous system having controlled muscles in groups. We first show that the biomechanics of the limb constrains musculotendon length changes to a low-dimensional subspace across all possible movement directions. We then show that a modest assumption—that each muscle is independently instructed to resist length change—leads to the result that electromyographic (EMG) synergies will arise without the need to conclude that they are a product of neural coupling among muscles. Finally, we show that there are dimensionality-reducing constraints in the isometric production of force in a variety of directions, but that these constraints are more easily controlled for, suggesting new experimental directions. These counter-examples to current thinking clearly show how experimenters could adequately control for the constraints described here when designing experiments to test for muscle synergies—but, to the best of our knowledge, this has not yet been done

    Evidence of Potential Averaging over the Finite Surface of a Bioelectric Surface Electrode

    Get PDF
    Most bioelectric signals are not only functions of time but also exhibit a variation in spatial distribution. Surface EMG signals are often "summarized" by a large electrode. The effect of such an electrode is interpreted as averaging the potential at the surface of the skin beneath the electrode. We first introduce an electrical equivalent model to delineate this principle of averaging. Next, in a realistic finite element model of EMG generation, two outcome variables are evaluated to assess the validity of the averaging principle. One is the change in voltage distribution in the volume conductor after electrode application. The other is the change in voltage across the high impedance double layer between tissue and electrode. We found that the principle of averaging is valid, once the impedance of the double layer is sufficiently high. The simulations also revealed that skin conductivity plays a role. High-density surface EMG provided experimental evidence consistent with the simulation results. A grid with 120 small electrodes was placed over the thenar muscles of the hand. Electrical nerve stimulation assured a reproducible compound muscle response. The averaged grid response was compared with a single electrode matching the surface of the high-density electrodes. The experimental results showed relatively small errors indicating that averaging of the surface potential by the electrode is a valid principle under most practical conditions. © 2009 Biomedical Engineering Society

    Conventionally assessed voluntary activation does not represent relative voluntary torque production

    Get PDF
    The ability to voluntarily activate a muscle is commonly assessed by some variant of the twitch interpolation technique (ITT), which assumes that the stimulated force increment decreases linearly as voluntary force increases. In the present study, subjects (n = 7) with exceptional ability for maximal voluntary activation (VA) of the knee extensors were used to study the relationship between superimposed and voluntary torque. This includes very high contraction intensities (90–100%VA), which are difficult to consistently obtain in regular healthy subjects (VA of ∼90%). Subjects were tested at 30, 60, and 90° knee angles on two experimental days. At each angle, isometric knee extensions were performed with supramaximal superimposed nerve stimulation (triplet: three pulses at 300 Hz). Surface EMG signals were obtained from rectus femoris, vastus lateralis, and medialis muscles. Maximal VA was similar and very high across knee angles: 97 ± 2.3% (mean ± SD). At high contraction intensities, the increase in voluntary torque was far greater than would be expected based on the decrement of superimposed torque. When voluntary torque increased from 79.6 ± 6.1 to 100%MVC, superimposed torque decreased from 8.5 ± 2.6 to 2.8 ± 2.3% of resting triplet. Therefore, an increase in VA of 5.7% (from 91.5 ± 2.6 to 97 ± 2.3%) coincided with a much larger increase in voluntary torque (20.4 ± 6.1%MVC) and EMG (33.9 ± 6.6%max). Moreover, a conventionally assessed VA of 91.5 ± 2.6% represented a voluntary torque of only 79.6 ± 6.1%MVC. In conclusion, when maximal VA is calculated to be ∼90% (as in regular healthy subjects), this probably represents a considerable overestimation of the subjects’ ability to maximally drive their quadriceps muscles

    Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability.</p> <p>Methods</p> <p>Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M<sub>max </sub>and F-waves were elicited at different times before or after the vibratory stimulation.</p> <p>Results</p> <p>The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves.</p> <p>Conclusions</p> <p>These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.</p

    A computational model of use-dependent motor recovery following a stroke: Optimizing corticospinal activations via reinforcement learning can explain residual capacity and other strength recovery dynamics

    Full text link
    This paper describes a computational model of use-dependent recovery of movement strength following a stroke. The model frames the problem of strength recovery as that of learning appropriate activations of residual corticospinal neurons to their target motoneuronal pools. For example, for an agonist/antagonist muscle pair, we assume the motor system must learn to activate preserved agonist-exciting corticospinal neurons and deactivate preserved antagonist-exciting corticospinal neurons. The model incorporates a biologically plausible reinforcement learning algorithm for adjusting cell activation patterns – stochastic search – using generated limb force as the teaching signal to adjust the synaptic weights that determine cell activations. The model makes predictions consistent with clinical and brain imaging data, such as that patients can achieve an increase in strength after appearing to reach a recovery plateau (i.e., “residual capacity”), that the differential effect of a dose of movement practice will be greater earlier in recovery, and that force-related brain activation will increase in secondary motor areas following a stroke. An interesting prediction that could be explored clinically is that temporarily inhibiting subpopulations of more powerfully connected corticospinal neurons during late movement training will allow the motor system to optimize corticospinal neurons with a weaker influence, whose optimization was blocked by the rapid optimization of more strongly connected neurons early in training

    Novel Methods for Surface EMG Analysis and Exploration Based on Multi-Modal Gaussian Mixture Models

    Get PDF
    <div><p>This paper introduces a new method for data analysis of animal muscle activation during locomotion. It is based on fitting Gaussian mixture models (GMMs) to surface EMG data (sEMG). This approach enables researchers/users to isolate parts of the overall muscle activation within locomotion EMG data. Furthermore, it provides new opportunities for analysis and exploration of sEMG data by using the resulting Gaussian modes as atomic building blocks for a hierarchical clustering. In our experiments, composite peak models representing the general activation pattern per sensor location (one sensor on the long back muscle, three sensors on the gluteus muscle on each body side) were identified per individual for all 14 horses during walk and trot in the present study. Hereby we show the applicability of the method to identify composite peak models, which describe activation of different muscles throughout cycles of locomotion.</p></div

    Age-dependent motor unit remodelling in human limb muscles.

    Get PDF
    Voluntary control of skeletal muscle enables humans to interact with and manipulate the environment. Lower muscle mass, weakness and poor coordination are common complaints in older age and reduce physical capabilities. Attention has focused on ways of maintaining muscle size and strength by exercise, diet or hormone replacement. Without appropriate neural innervation, however, muscle cannot function. Emerging evidence points to a neural basis of muscle loss. Motor unit number estimates indicate that by age around 71 years, healthy older people have around 40 % fewer motor units. The surviving low- and moderate-threshold motor units recruited for moderate intensity contractions are enlarged by around 50 % and show increased fibre density, presumably due to collateral reinnervation of denervated fibres. Motor unit potentials show increased complexity and the stability of neuromuscular junction transmissions is decreased. The available evidence is limited by a lack of longitudinal studies, relatively small sample sizes, a tendency to examine the small peripheral muscles and relatively few investigations into the consequences of motor unit remodelling for muscle size and control of movements in older age. Loss of motor neurons and remodelling of surviving motor units constitutes the major change in ageing muscles and probably contributes to muscle loss and functional impairments. The deterioration and remodelling of motor units likely imposes constraints on the way in which the central nervous system controls movements

    Prediction of muscle activity during loaded movements of the upper limb

    No full text
    BACKGROUND: Accurate prediction of electromyographic (EMG) signals associated with a variety of motor behaviors could, in theory, serve as activity templates needed to evoke movements in paralyzed individuals using functional electrical stimulation. Such predictions should encompass complex multi-joint movements and include interactions with objects in the environment. METHODS: Here we tested the ability of different artificial neural networks (ANNs) to predict EMG activities of 12 arm muscles while human subjects made free movements of the arm or grasped and moved objects of different weights and dimensions. Inputs to the trained ANNs included hand position, hand orientation, and thumb grip force. RESULTS: The ability of ANNs to predict EMG was equally as good for tasks involving interactions with external loads as for unloaded movements. The ANN that yielded the best predictions was a feed-forward network consisting of a single hidden layer of 30 neural elements. For this network, the average coefficient of determination (R2 value) between predicted and actual EMG signals across all nine subjects and 12 muscles during movements that involved episodes of moving objects was 0.43. CONCLUSION: This reasonable accuracy suggests that ANNs could be used to provide an initial estimate of the complex patterns of muscle stimulation needed to produce a wide array of movements, including those involving object interaction, in paralyzed individuals.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
    corecore