5 research outputs found

    Combination of adsorption and biological treatment in a SBR for colour elimination in municipal wastewater with discharges of textile effluents

    Full text link
    ischarge of textile wastewaters (WW) to municipal wastewater treatment plants (MWWTPs) entails the presence of colour in the final effluent. It causes a negative impact on the environment and, additionally, hinders an efficient disinfection by UV lamps. In this work, a combined process consisting of the addition of powdered activated carbon (PAC) to a sequencing batch reactor was studied. The main objective was to reduce WW colour in order to obtain transmittance values in the final effluent above 60%, measured at a wavelength of 254 nm, with the aim of ensuring disinfection with UV lamps. Experiments were performed with both simulated wastewater (SWW) including the azo dye Reactive Black 5 and WW from a MWWTP receiving discharges from textile mills. Biosorption increased the transmittance of the effluent around 25% for SWW and 24% for WW, in comparison with the values measured in the influent. The PAC concentrations for the achievement of a value of 60% in the transmittance of the treated water were 250 and 400 mg/L for the simulated effluent and for the WW, respectively. PAC had to be periodically added in order to cover its loss in the waste sludge.Authors thank Depuracion de Aguas del Mediterraneo S.A. for its support in the work.Ferrer-Polonio, E.; Iborra Clar, A.; Mendoza Roca, JA.; Iborra Clar, MI. (2014). Combination of adsorption and biological treatment in a SBR for colour elimination in municipal wastewater with discharges of textile effluents. Desalination and Water Treatment. 55(7):1915-1912. doi:10.1080/19443994.2014.929979S1915191255

    Preparation of Sewage Sludge¿Based Activated Carbon for Hydrogen Sulphide Removal

    Full text link
    [EN] The circular economy concept boosts the use of wastes as secondary raw materials in the EU renewable and sustainable framework. In wastewater treatment plants (WWTP), sludge is one of the most important wastes, and its management is being widely discussed in the last years. In this work, sewage sludge from WWTP was employed as raw material for producing activated carbon (AC) by physical-chemical activation. The prepared AC was subsequently tested for hydrogen sulphide removal in view of its further use in deodorization in a WWTP. The effects of the activation temperature and the chemical agent used (NaOH and KOH) during the activation process were studied. On the one hand, the characteristics of each AC fabricated were analysed in terms of BET (Brunauer-Emmett-Teller) surface area, pore and micropore volume, pore diameter, surface morphology and zeta potential. On the other hand, BET isotherms were also calculated. Finally, both the prepared AC and a commercial AC were tested for H2S removal from a gas stream. Results demonstrated that the optimum physical and chemical activation temperature was 600 degrees C and 1000 degrees C, respectively, and the best activated agent tested was KOH. The prepared AC showed excellent properties (specific surface area around 300 m(2)/g) for H2S removal, even better efficiencies than those achieved by the tested commercial AC.Lujan Facundo, MJ.; Iborra-Clar, MI.; Mendoza Roca, JA.; Alcaina-Miranda, MI.; Maciá, AM.; Lardin, C.; Pastor, L.... (2020). Preparation of Sewage Sludge¿Based Activated Carbon for Hydrogen Sulphide Removal. Water Air & Soil Pollution. 231(4):1-12. https://doi.org/10.1007/s11270-020-04518-wS1122314Andrade, S. N., Veloso, C. M., Fontan, R. C. I., Bonomo, R. C. F., Santos, L. S., Brito, M. J. P., & Diniz, G. A. (2018). Chemical-activated carbon from coconut (Cocos nucifera) endocarp waste and its application in the adsorption of beta lactoglobulin protein. Revista Mexicana de Ingenieria Quimica, 17(2), 463–475.APHA, AWWA, WEF. (2005). Standard methods for the examination of water and wastewater. Washington.Arami-Niya, A., Daud, W. M. A. W., & Mjalli, F. S. (2010). Using granular activated carbon prepared from oil palm shell by ZnCl 2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 89, 197–203.Aslam, Z., Shawabkeh, R., Hussein, I., Al-Baghli, N., & Eic, M. (2015). Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream. Applied Surface Science, 327, 107–115.Carrete, J., García, M., Rodríguez, J. R., Cabeza, O., & Varela, L. M. (2011). Theoretical model for moisture adsorption on ionic liquids: a modified Brunauer–Emmet–Teller isotherm approach. Fluid Phase Equilibria, 301, 118–122.Chen, C. L., Park, S. W., Su, J. F., Yu, Y. H., Heo, J. E., Kim, K. D., & Huang, C. P. (2019). The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats). Science of the Total Environment, 693, 133605.Cheng, S., Zhang, L., Ma, A., Xia, H., Peng, J., Li, C., & Shu, J. (2018). Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. Journal of Environmental Sciences, 65, 92–102.Chiavola, A. (2013). Textiles. Water Environment Research, 85, 1581–1600.De Falco, G., Montagnaro, F., Balsamo, M., Erto, A., Deorsola, F. A., Lisi, L., & Cimino, S. (2018). Synergic effect of Zn and Cu oxides dispersed on activated carbon during reactive adsorption of H 2 S at room temperature. Microporous and Mesoporous Materials, 257, 135–146.Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85, 833–846.Donald, J., Ohtsuka, Y., & Xu, C. C. (2011). Effects of activation agents and intrinsic minerals on pore development in activated carbons derived from a Canadian peat. Materials Letters, 65, 744–747.dos Reis, G. S., Mahbub, M. K. B., Wilhelm, M., Lima, E. C., Sampaio, C. H., Saucier, C., & Dias, S. L. P. (2016). Activated carbon from sewage sludge for removal of sodium diclofenac and nimesulide from aqueous solutions. Korean Journal of Chemical Engineering, 33(11), 3149–3161.Hadi, P., Xu, M., Ning, C., Lin, C. S. K., & McKay, G. (2015). A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chemical Engineering Journal, 260, 895–906.Kacan, E. (2016). Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal. Journal of Environmental Management, 166, 116–123.Kazak, O., Eker, Y. R., Bingol, H., & Tor, A. (2018). Preparation of chemically-activated high surface area carbon from waste vinasse and its efficiency as adsorbent material. Journal of Molecular Liquids, 272, 189–197.Kimura, K., Honoki, D., & Sato, T. (2017). Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: up-concentration of organic matter for efficient energy recovery. Separation and Purification Technology, 181, 37–43.Kuroda, S., Nagaishi, T., Kameyama, M., Koido, K., Seo, Y., & Dowaki, K. (2018). Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: Physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation. International Journal of Hydrogen Energy, 43, 16573–16588.Ladavos, A. K., Katsoulidis, A. P., Iosifidis, A., Triantafyllidis, K. S., Pinnavaia, T. J., & Pomonis, P. J. (2012). The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids. Microporous and Mesoporous Materials, 151, 126–133.Lapham, D. P., & Lapham, J. L. (2017). Gas adsorption on commercial magnesium stearate: effects of degassing conditions on nitrogen BET surface area and isotherm characteristics. International Journal of Pharmaceutics, 530, 364–376.Li, W. H., Yue, Q. Y., Gao, B. Y., Ma, Z. H., Li, Y. J., & Zhao, H. X. (2011). Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chemical Engineering Journal, 171, 320–327.Li, F., Lei, T., Zhang, Y., Wei, J., & Yang, Y. (2015). Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide under room temperature. Frontiers of Environmental Science & Engineering, 9(2), 190–196.Li, J., Xing, X., Li, J., Shi, M., Lin, A., Xu, C., Zheng, J., & Li, R. (2018). Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environmental Pollution, 234, 677–683.Li, D., Zhou, J., Wang, Y., Tian, Y., Wei, L., Zhang, Z., Qiao, Y., & Li, J. (2019). Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel, 238, 232–239.Li, Y. H., Chang, F. M., Huang, B., Song, Y. P., Zhao, H. Y., & Wang, K. J. (2020). Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel, 266, 117053.Mininni, G., Blanch, A. R., Lucena, F., & Berselli, S. (2015). EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environmental Science and Pollution Research, 22, 7361–7374.Pandiarajan, A., Kamaraj, R., Vasudevan, S., & Vasudevan, S. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329–341.Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of the available media and approaches for phosphorus recovery from wastewater. Water, Air, and Soil Pollution, 229.Pezoti, O., Cazetta, A. L., Bedin, K. C., Souza, L. S., Martins, A. C., Silva, T. L., Santos Júnior, O. O., Visentainer, J. V., & Almeida, V. C. (2016). NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chemical Engineering Journal, 288, 778–788.Ping, Q., Zheng, M., Dai, X., & Li, Y. (2020). Metagenomic characterization of the enhanced performance of anaerobic fermentation of waste activated sludge with CaO2 addition at ambient temperature: fatty acid biosynthesis metabolic pathway and CAZymes. Water Research, 170, 115309.Qiu, M., & Huang, C. (2015). Removal of dyes from aqueous solution by activated carbon from sewage sludge of the municipal wastewater treatment plant. Desalination and Water Treatment, 53, 3641–3648.Rawal, S., Joshi, B., & Kumar, Y. (2018). Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors. The Journal of Energy Storage, 20, 418–426.Satya Sai, P. M., & Krishnaiah, K. (2005). Development of the pore-size distribution in activated carbon produced from coconut shell char in a fluidized-bed reactor. Industrial and Engineering Chemistry Research, 44, 51–60.Shen, F., Liu, J., Zhang, Z., Dong, Y., & Gu, C. (2018). Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Processing Technology, 171, 258–264.Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57.Sulaiman, N. S., Hashim, R., Mohamad Amini, M. H., Danish, M., & Sulaiman, O. (2018). Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield. Journal of Cleaner Production, 198, 1422–1430.Sun, K., Huang, Q., Chi, Y., & Yan, J. (2018). Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil. Waste Management, 81, 128–137.Tian, D., Xu, Z., Zhang, D., Chen, W., Cai, J., Deng, H., Sun, Z., & Zhou, Y. (2019). Micro–mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T. Journal of Solid State Chemistry, 269, 580–587.Wang, X., Zhu, N., & Yin, B. (2008). Preparation of sludge-based activated carbon and its application in dye wastewater treatment. Journal of Hazardous Materials, 153, 22–27.Wang, N., Zhang, W., Cao, B., Yang, P., Cui, F., & Wang, D. (2018). Advanced anaerobic digested sludge dewaterability enhancement using sludge based activated carbon (SBAC) in combination with organic polymers. Chemical Engineering Journal, 350, 660–672.Wei Yu, K. S. (2018). Modeling gas adsorption in Marcellus shale using Langmuir and BET isotherms. In Shale gas and tight oil reservoir simulation (pp. 129–154).Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Chang, S. W., Nguyen, D. D., Liang, H., & Wang, J. (2018). A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresource Technology, 268, 749–758.Zhang, J. P., Sun, Y., Woo, M. W., Zhang, L., & Xu, K. Z. (2016). Preparation of steam activated carbon from black liquor by flue gas precipitation and its performance in hydrogen sulfide removal: experimental and simulation works. Revista Mexicana de Urología, 76, 395–404.Zhang, Y., Song, X., Xu, Y., Shen, H., & Kong, X. (2019). Utilization of wheat bran for producing activated carbon with high speci fi c surface area via NaOH activation using industrial furnace. Journal of Cleaner Production, 210, 366–375.Zhu, J., Li, Y. H., Xu, L., & Liu, Z. Y. (2018). Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents. Ecotoxicology and Environmental Safety, 165, 115–125

    Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry

    Full text link
    Biological treatment of hypersaline effluents with high organic matter concentrations is difficult to carry out and it can require a long start-up phase. This is the case of the treatment of fermentation brines from the table olive packaging (FTOP) industries. These effluents are characterized by conductivity values around 90 mS/cm, COD around 15,000 mg/L and total phenols concentration around 1000 mg/L. In this work, FTOP has been treated in two sequencing batch reactors (SBRs) operated in parallel. In each SBR a different start-up strategy has been carried out. In the SBR-2, biomass was previously acclimated to high salinity using simulated wastewater without phenolic compounds, meanwhile in the SBR-1, FTOP was added from the beginning of the start-up. Results indicated more operational problems in the SBR-2 consisting in a higher deflocculation that drove to high turbidity values in the effluent. Besides, at the end of the start-up, the SBR-1 reached higher COD removal efficiencies than SBR-2 (88% and 73%, respectively). In both reactors, an increase in gamma-Proteobacteria in the microbial population was observed for increasing conductivities. In addition, phenols were completely removed in both reactors at the end of the start-up, what implied very low toxicity values in the effluent.The authors of this work thank the financial support of CDTI (Centre for Industrial Technological Development) depending on the Spanish Ministry of Science and Innovation.Ferrer-Polonio, E.; Mendoza Roca, JA.; Iborra Clar, A.; Alonso Molina, JL.; Pastor Alcañiz, L. (2015). Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry. Chemical Engineering Journal. 273:595-602. doi:10.1016/j.cej.2015.03.062S59560227

    Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies

    Full text link
    [EN] The fermentation brines from table olive processing (FTOP) are hypersaline effluents (conductivities higher than 75 mS·cm-1) with high organic matter concentrations (COD around 10 g·L-1), which also include phenolic compounds (between 700 and 1500 mg TY·L-1). In this work, an integrated process for the FTOP reuse as brine in the table olive processing has been evaluated. This integrated process consisted of a biological treatment followed by a membrane system, which included ultrafiltration (UF) plus nanofiltration (NF). The biological treatment was carried out by 6 L laboratory sequencing batch reactor (SBR). UF and NF were performed in laboratory plants for flat membranes of 0.0125 and 0.0072 m2, respectively. Each stream generated during the FTOP treatment (SBR effluent, and UF and NF permeates) were evaluated. The SBR eliminated around 80% of COD and 71% of total phenols concentration. In the final NF permeate the COD concentration was lower than 125 mg·L-1; while the turbidity, colour and phenolic compounds, were completely removed.The authors of this work thank the financial support of CDTI (Centre for Development Technological Industrial) depending on the Spanish Ministry of Science and Innovation.Ferrer-Polonio, E.; Carbonell Alcaina, C.; Mendoza Roca, JA.; Iborra Clar, A.; Alvarez Blanco, S.; Bes-Piá, M.; Pastor Alcañiz, L. (2017). Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies. Journal of Cleaner Production. 142:1377-1386. doi:10.1016/j.jclepro.2016.11.169S1377138614
    corecore