99 research outputs found

    An Automated Method for Mapping Independent Spatial b Values

    Get PDF
    We present an automated method for mapping the b values. The algorithm is very simple and presents three advantages: (a) it does not requires any tuning of the parameters like, for instance, a fixed cell size or a maximum radius of the cell; (b) it implies a more appropriate use of the catalog, by using almost all the events in the catalog used (with a tolerance of 1%) with no overlap; (c) it implies the full independence of the b values, thus allowing the statistical comparison of the results using standard tests. Although the resulting b values are comparable with those obtained by applying the other methods of common use in seismology, these latter (a) leave out many earthquakes from the analysis, with loose of useful information, (b) produce diffuse cells overlapping aiming at reaching many cells of the grid in order to get the correct number of events in each cell, and (c) results in correlated b values, which do not allow the test of significance for the differences in the b values. Finally, due to the independence from any ad hoc a-priori choice, our method is suitable for automatic and operator-free procedures.Plain Language Summary The methods usually used in seismology for mapping the b value require the tuning of some parameters depending on the analyzed catalog. Here we propose a method that only implies the choice of the minimum number of earthquakes needed to obtain reliable b value estimates, which does not depend on the specific cases. Due to the mutual complete independence of the resulting b values, the proposed method allows the use of standard statistical tests to compare the results

    Memory in Self Organized Criticality

    Full text link
    Many natural phenomena exhibit power law behaviour in the distribution of event size. This scaling is successfully reproduced by Self Organized Criticality (SOC). On the other hand, temporal occurrence in SOC models has a Poisson-like statistics, i.e. exponential behaviour in the inter-event time distribution, in contrast with experimental observations. We present a SOC model with memory: events are nucleated not only as a consequence of the instantaneous value of the local field with respect to the firing threshold, but on the basis of the whole history of the system. The model is able to reproduce the complex behaviour of inter-event time distribution, in excellent agreement with experimental seismic data

    Universality in solar flare and earthquake occurrence

    Full text link
    Earthquakes and solar flares are phenomena involving huge and rapid releases of energy characterized by complex temporal occurrence. By analysing available experimental catalogs, we show that the stochastic processes underlying these apparently different phenomena have universal properties. Namely both problems exhibit the same distributions of sizes, inter-occurrence times and the same temporal clustering: we find afterflare sequences with power law temporal correlations as the Omori law for seismic sequences. The observed universality suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism

    The Corinth Rift Laboratory, Greece (CRL): A Multidisciplinary Near Fault Observatory (NFO) on a Fast Rifting System

    Full text link
    The western rift of Corinth (Greece) is one of the most active tectonic structures of the euro-mediterranean area. Its NS opening rate is 1.5 cm/yr ( strain rate of 10-6/yr) results into a high microseismicity level and a few destructive, M>6 earthquakes per century, activating a system of mostly north dipping normal faults. Since 2001, monitoring arrays of the European Corinth Rift Laboratory (CRL, www.crlab.eu) allowed to better track the mechanical processes at work, with short period and broad band seismometers, cGPS, borehole strainmeters, EM stations, …). The recent (300 kyr) tectonic history has been revealed by onland (uplifted fan deltas and terraces) and offshore geological studies (mapping, shallow seismic, coring), showing a fast evolution of the normal fault system. The microseismicity, dominated by swarms lasting from days to months, mostly clusters in a layer 1 to 3 km thick, between 6 and 9 km in depth, dipping towards north, on which most faults are rooting. The diffusion of the microseismicity suggests its triggering by pore pressure transients, with no or barely detected strain. Despite a large proportion of multiplets, true repeaters seem seldom, suggesting a minor contribution of creep in their triggering, although transient or steady creep is clearly detected on the shallow part of some majors faults. The microseismic layer may thus be an immature, downward growing detachment, and the dominant rifting mechanism might be a mode I, anelastic strain beneath the rift axis , for which a mechanical model is under development. Paleoseismological (trenching, paleoshorelines, turbidites), archeological and historical studies completed the catalogues of instrumental seismicity, motivating attempts of time dependent hazard assessment. The Near Fault Observatory of CRL is thus a multidisciplinary research infrastructure aiming at a better understanding and modeling of multiscale, coupled seismic/aseismic processes on fault systems.Grant for Researchers (CC) ID 188753
    • …
    corecore