1,213 research outputs found

    Interaction of strongly correlated electrons and acoustical phonons

    Get PDF
    We investigate the interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model in which both, the electron-phonon interaction and the on-site Coulomb repulsion are considered to be strong. The Lang-Firsov canonical transformation allows to obtain mobile polarons for which a new diagram technique and generalized Wick's theorem is used. This allows to handle the Coulomb repulsion between the electrons emerged into a sea of phonon fields (\textit{phonon clouds}). The physics of emission and absorption of the collective phonon-field mode by the polarons is discussed in detail. Moreover, we have investigated the different behavior of optical and acoustical phonon clouds when propagating through the lattice. In the strong-coupling limit of the electron-phonon interaction, and in the normal as well as in the superconducting phase, chronological thermodynamical averages of products of acoustical phonon-cloud operators can be expressed by one-cloud operator averages. While the normal one-cloud propagator has the form of a Lorentzian, the anomalous one is of Gaussian form and considerably smaller. Therefore, the anomalous electron Green's functions can be considered to be more important than corresponding polarons functions, i.e., pairing of electrons without phonon-clouds is easier to achieve than pairing of polarons with such clouds.Comment: : 28 pages, 9 figures, revtex4. Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Is the term "type-1.5 superconductivity" warranted by Ginzburg-Landau theory?

    Full text link
    It is shown that within the Ginzburg-Landau (GL) approximation the order parameters Delta1(r, T) and Delta2(r, T) in two-band superconductors vary on the same length scale, the difference in the zero-T coherence lengths xi0_i ~vF_i/Delta_i(0), i = 1, 2 notwithstanding. This amounts to a single physical GL parameter kappa and the classic GL dichotomy: kappa < 1/sqrt(2) for type-I and kappa > 1/sqrt(2) for type-II.Comment: 5 pages, revised and extended version; previous title "Two-band superconductors near Tc" change

    Constraints on cosmic-ray propagation models from a global Bayesian analysis

    Full text link
    Research in many areas of modern physics such as, e.g., indirect searches for dark matter and particle acceleration in SNR shocks, rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions, The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, that uses astrophysical information, nuclear and particle data as input to self-consistently predict CRs, gamma rays, synchrotron and other observables. We demonstrate that a full Bayesian analysis is possible using nested sampling and Markov Chain Monte Carlo methods (implemented in the SuperBayeS code) despite the heavy computational demands of a numerical propagation code. The best-fit values of parameters found in this analysis are in agreement with previous, significantly simpler, studies also based on GALPROP.Comment: 19 figures, 3 tables, emulateapj.sty. A typo is fixed. To be published in the Astrophysical Journal v.728 (February 10, 2011 issue). Supplementary material can be found at http://www.g-vo.org/pub/GALPROP/GalpropBayesPaper

    Diagrammatic theory for Periodic Anderson Model: Stationary property of the thermodynamic potential

    Full text link
    Diagrammatic theory for Periodic Anderson Model has been developed, supposing the Coulomb repulsion of ff- localized electrons as a main parameter of the theory. ff- electrons are strongly correlated and cc- conduction electrons are uncorrelated. Correlation function for ff- and mass operator for cc- electrons are determined. The Dyson equation for cc- and Dyson-type equation for ff- electrons are formulated for their propagators. The skeleton diagrams are defined for correlation function and thermodynamic functional. The stationary property of renormalized thermodynamic potential about the variation of the mass operator is established. The result is appropriate as for normal and as for superconducting state of the system.Comment: 12 pages, 10 figure

    Propagation of cosmic rays: nuclear physics in cosmic-ray studies

    Full text link
    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and alpha-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse gamma rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near future. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.Comment: 6 pages, 13 figures, aip style files. Invited review talk at the Int. Conf. on Nuclear Data-2004 (Santa Fe, Sep. 26 - Oct. 1, 2004). To appear in AIP Conf. Pro

    Photo-induced spin filtering in a double quantum dot

    Full text link
    We investigate the spin-resolved electron dynamics in a double quantum dot driven by ultrafast asymmetric electromagnetic pulses. Using a analytical model we show that applying an appropriate pulse sequence allows to control coherently the spin degree of freedom on the femtosecond time scale. It can be achieved that the spin-up state is localized in a selected quantum dot while the spin-down state remains in the other dot. We show that this photo-induced spin-dependent separation can be maintained for a desired period of time.Comment: shortened, revised version 2 article published at Appl. Phys. Let

    Challenging cosmic ray propagation with antiprotons. Evidence for a "fresh" nuclei component?

    Full text link
    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. It was shown that the reacceleration models designed to match secondary to primary nuclei ratios (e.g., boron/carbon) produce too few antiprotons. Matching both the secondary to primary nuclei ratio and the antiproton flux requires artificial breaks in the diffusion coefficient and the primary injection spectrum suggesting the need for other approaches. In the present paper we discuss one possibility to overcome these difficulties. Using the measured antiproton flux AND B/C ratio to fix the diffusion coefficient, we show that the spectra of primary nuclei as measured in the heliosphere may contain a fresh local "unprocessed" component at low energies perhaps associated with the Local Bubble, thus decreasing the measured secondary to primary nuclei ratio. The independent evidence for SN activity in the solar vicinity in the last few Myr supports this idea. The model reproduces antiprotons, B/C ratio, and elemental abundances up to Ni (Z<=28). Calculated isotopic distributions of Be and B are in perfect agreement with CR data. The abundances of three "radioactive clock" isotopes in CR, 10Be, 26Al, 36Cl, are all consistent and indicate a halo size z_h~4 kpc based on the most accurate data taken by the ACE spacecraft.Comment: To be published in The Astrophysical Journal, v.586, 2003 April 1; final version: 19 pages, 24 ps-figures, emulateapj5.sty (modified), natbib.sty, aastex.cls. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    The Glacier Complexes of the Mountain Massifs of the North-West of Inner Asia and their Dynamics

    Get PDF
    The subject of this paper is the glaciation of the mountain massifs Mongun-Taiga, Tavan-Boghd-Ola, Turgeni- Nuru, and Harhira-Nuru. The glaciation is represented mostly by small forms that sometimes form a single complex of domeshaped peaks. According to the authors, the modern glaciated area of the mountain massifs is 21.2 km2 (Tavan-Boghd-Ola), 20.3 km2 (Mongun-Taiga), 42 km2 (Turgeni- Nuru), and 33.1 km2 (Harhira-Nuru). The area of the glaciers has been shrinking since the mid 1960’s. In 1995–2008, the rate of reduction of the glaciers’ area has grown considerably: valley glaciers were rapidly degrading and splitting; accumulation of morainic material in the lower parts of the glaciers accelerated. Small glaciers transformed into snowfields and rock glaciers. There has been also a degradation of the highest parts of the glaciers and the collapse of the glacial complexes with a single zone of accumulation into isolated from each other glaciers. Reduced snow cover area has led to a rise in the firn line and the disintegration of a common accumulation area of the glacial complex. In the of the Mongun-Taiga massif, in 1995– 2008, the firn line rose by 200–300 m. The reduction of the glaciers significantly lagged behind the change in the position of the accumulation area boundary. In the past two years, there has been a significant recovery of the glaciers that could eventually lead to their slower degradation or stabilization of the glaciers in the study area

    Superconductivity in two-band systems with variable charge carrier density. The case of MgB2

    Full text link
    The theory of thermodynamic properties of two-band superconductor with reduced density charge carriers is developed on the base of phonon superconducting mechanism with strong electron-phonon interaction. This theory is adapted to describe the behavior of critical temperature Tc, energy gaps Delta1, Delta2, and the relative jump of electron specific heat (Cs - Cn)/Cn in the point T = Tc along with the variation of charge carrier density in the compound MgB2 when substitutional impurities with different valence are introduced into the system. It is shown, that according to the filling mechanism of energy bands which overlap on Fermi surface, the quantities Tc, Delta1, Delta2 decrease when this compound is doped with electrons and remain constant or weakly change when the system is doped with holes. The theory qualitatively agrees with the experimental data. Also is shown that the consideration of inter- and intraband scattering of electrons on impurity potential improves this agreement.Comment: 19 pages, 6 figures, 1 table. to be published in JETP (first number 2007

    Two-band superconductors: Hidden criticality deep in the superconducting state

    Full text link
    We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling γ\gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales proportionally to \gamma^(-\mu), with the Landau critical exponent \mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multi-band superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.Comment: 6 pages, 2 figures, Supplementary material included. Accepted for publication in PR
    corecore