Recent measurements of the cosmic ray (CR) antiproton flux have been shown to
challenge existing CR propagation models. It was shown that the reacceleration
models designed to match secondary to primary nuclei ratios (e.g.,
boron/carbon) produce too few antiprotons. Matching both the secondary to
primary nuclei ratio and the antiproton flux requires artificial breaks in the
diffusion coefficient and the primary injection spectrum suggesting the need
for other approaches.
In the present paper we discuss one possibility to overcome these
difficulties. Using the measured antiproton flux AND B/C ratio to fix the
diffusion coefficient, we show that the spectra of primary nuclei as measured
in the heliosphere may contain a fresh local "unprocessed" component at low
energies perhaps associated with the Local Bubble, thus decreasing the measured
secondary to primary nuclei ratio. The independent evidence for SN activity in
the solar vicinity in the last few Myr supports this idea. The model reproduces
antiprotons, B/C ratio, and elemental abundances up to Ni (Z<=28). Calculated
isotopic distributions of Be and B are in perfect agreement with CR data. The
abundances of three "radioactive clock" isotopes in CR, 10Be, 26Al, 36Cl, are
all consistent and indicate a halo size z_h~4 kpc based on the most accurate
data taken by the ACE spacecraft.Comment: To be published in The Astrophysical Journal, v.586, 2003 April 1;
final version: 19 pages, 24 ps-figures, emulateapj5.sty (modified),
natbib.sty, aastex.cls. More details can be found at
http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm