8 research outputs found

    Ways of Asking, Ways of Telling: A Methodological Comparison of Ethnographic and Research Diagnostic Interviews

    Get PDF
    The interpretive understanding that can be derived from interviews is highly influenced by methods of data collection, be they structured or semistructured, ethnographic, clinical, life-history or survey interviews. This article responds to calls for research into the interview process by analyzing data produced by two distinctly different types of interview, a semistructured ethnographic interview and the Structured Clinical Interview for DSM, conducted with participants in the Navajo Healing Project. We examine how the two interview genres shape the context of researcher-respondent interaction and, in turn, influence how patients articulate their lives and their experience in terms of illness, causality, social environment, temporality and self/identity. We discuss the manner in which the two interviews impose narrative constraints on interviewers and respondents, with significant implications for understanding the jointly constructed nature of the interview process. The argument demonstrates both divergence and complementarity in the construction of knowledge by means of these interviewing methods

    Fretting corrosion of CoCr alloy: Effect of load and displacement on the degradation mechanisms

    No full text
    Fretting corrosion of medical devices is of growing concern, yet, the interactions between tribological and electrochemical parameters are not fully understood. Fretting corrosion of CoCr alloy was simulated, and the components of damage were monitored as a function of displacement and contact pressure. Free corrosion potential (Ecorr), intermittent linear polarisation resistance and cathodic potentiostatic methods were used to characterise the system. Interferometry was used to estimate material loss post rubbing. The fretting regime influenced the total material lost and the dominant degradation mechanism. At high contact pressures and low displacements, pure corrosion was dominant with wear and its synergies becoming more important as the contact pressure and displacement decreased and increased, respectively. In some cases, an antagonistic effect from the corrosion-enhanced wear contributor was observed suggesting that film formation and removal may be present. The relationship between slip mechanism and the contributors to tribocorrosion degradation is presented

    Genomics: applications to Antarctic ecosystems

    No full text
    Biological research in Antarctica has made considerable progress in science over recent decades. As little as 50 years ago, there was scant knowledge even of the species inhabiting the region. Since then, understanding has developed rapidly, across diverse disciplines including physiology, biochemistry, ecology and biogeography. Some dramatic global-scale discoveries and advances have been made, including the characterisation of antifreeze proteins from notothenioid fish and the finding that some fish lack a heat shock response, the identification of microbial communities living within the surface layers of rocks and description of the simplest faunal communities known, the identification that possibly the fastest environmental and ecological change on earth is occurring in Antarctic lakes, and that the biodiversity of the Southern Ocean is much greater than previously thought. Findings such as these have made biology in cold extreme environments one of the most stimulating areas for research in recent decades. Now, the advent and widespread applicability of the novel genomic technologies promise to move us into a period of equally, or possibly even more, rapid advance. At present, genomic information on Antarctic species is limited mainly to a number of fish species and microbes. However, an increasing number of Antarctic genomics projects are being funded and will significantly increase the amount of molecular information available on a much wider range of species in the near future. Hence it is timely to review progress so far in the use of genomic methods in Antarctic research and identify exciting prospects for dramatic future advances

    Design and performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC

    Get PDF
    The LHCb collaboration has redesigned its trigger to enable the full offline detector reconstruction to be performed in real time. Together with the real-time alignment and calibration of the detector, and a software infrastructure to make persistent the high-level physics objects produced during real-time processing, this redesign enabled the widespread deployment of real-time analysis during Run 2. We describe the design of the Run 2 trigger and real-time reconstruction, and present data-driven performance measurements for a representative sample of LHCb's physics programme

    Design and performance of the LHCb trigger and full real-time reconstruction in Run 2 of the LHC

    No full text
    corecore