568 research outputs found

    Reaction-diffusion equations with spatially distributed hysteresis

    Full text link
    The paper deals with reaction-diffusion equations involving a hysteretic discontinuity in the source term, which is defined at each spatial point. In particular, such problems describe chemical reactions and biological processes in which diffusive and nondiffusive substances interact according to hysteresis law. We find sufficient conditions that guarantee the existence and uniqueness of solutions as well as their continuous dependence on initial data.Comment: 30 pages, 14 figure

    Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions

    Full text link
    We have investigated low-temperature transport properties of two-dimensional arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has been found that in two-dimensional arrays of SNS junctions (i) a change in the energy spectrum within an interval of the order of the Thouless energy is observed even when the thermal broadening far exceeds the Thouless energy for a single SNS junction; (ii) the manifestation of the subharmonic energy gap structure (SGS) with high harmonic numbers is possible even if the energy relaxation length is smaller than that required for the realization of a multiple Andreev reflection in a single SNS junction. These results point to the synchronization of a great number of SNS junctions. A mechanism of the SGS origin in two-dimensional arrays of SNS junctions, involving the processes of conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure

    Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    Get PDF
    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north-south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory (STEREO) mission with coronagraphic observations from the SOlar and Heliospheric Observatory (SOHO) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as "raining inflows." This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.Peer reviewe

    The mathematical simulation of dc-dc coverter in the frequency-controlled electric drive with ultracapacitors

    Full text link
    В статье рассматриваются вопросы построения математической модели силовой части DCDC преобразователя, который используется для подключения суперконденсаторов в звено постоянного тока частотно-регулируемого электропривода. Рассматривается принцип действия DC-DC преобразователя, режимы его работы, приводятся уравнения и структурная схема для описания силовой части преобразователя в составе частотно-регулируемого электропривода. В заключительной части статьи приводятся результаты моделирования.The article deals with a mathematical model of the power part of the DC-DC converter, which is used to connect the supercapacitors into the DC link of frequency-controlled electric drive. The operating principle and boost and buck modes of the DC-DC converter are considered. The functional diagram and equations for power part of DC-DC converter as a part of frequency-controlled electric drive are described. The final part of the article presents the simulations results

    Molecular Plasmonic Silver Forests for the Photocatalytic-Driven Sensing Platforms

    Get PDF
    Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor’s performance when exposed to prostate cancer cells’ media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.</p

    The first widespread solar energetic particle event of solar cycle 25 on 2020 November 29 : Shock wave properties and the wide distribution of solar energetic particles

    Get PDF
    Context. On 2020 November 29, an eruptive event occurred in an active region located behind the eastern solar limb as seen from Earth. The event consisted of an M4.4 class flare, a coronal mass ejection, an extreme ultraviolet (EUV) wave, and a white-light (WL) shock wave. The eruption gave rise to the first widespread solar energetic particle (SEP) event of solar cycle 25, which was observed at four widely separated heliospheric locations (similar to 230 degrees). Aims. Our aim is to better understand the source of this widespread SEP event, examine the role of the coronal shock wave in the wide distribution of SEPs, and investigate the shock wave properties at the field lines magnetically connected to the spacecraft. Methods. Using EUV and WL data, we reconstructed the global three-dimensional structure of the shock in the corona and computed its kinematics. We determined the magnetic field configurations in the corona and interplanetary space, inferred the magnetic connectivity of the spacecraft with the shock surface, and derived the evolution of the shock parameters at the connecting field lines. Results. Remote sensing observations show formation of the coronal shock wave occurring early during the eruption, and its rapid propagation to distant locations. The results of the shock wave modelling show multiple regions where a strong shock has formed and efficient particle acceleration is expected to take place. The pressure/shock wave is magnetically connected to all spacecraft locations before or during the estimated SEP release times. The release of the observed near-relativistic electrons occurs predominantly close to the time when the pressure/shock wave connects to the magnetic field lines or when the shock wave becomes supercritical, whereas the proton release is significantly delayed with respect to the time when the shock wave becomes supercritical, with the only exception being the proton release at the Parker Solar Probe. Conclusions. Our results suggest that the shock wave plays an important role in the spread of SEPs. Supercritical shock regions are connected to most of the spacecraft. The particle increase at Earth, which is barely connected to the wave, also suggests that the cross-field transport cannot be ignored. The release of energetic electrons seems to occur close to the time when the shock wave connects to, or becomes supercritical at, the field lines connecting to the spacecraft. Energetic protons are released with a time-delay relative to the time when the pressure/shock wave connects to the spacecraft locations. We attribute this delay to the time that it takes for the shock wave to accelerate protons efficiently.Peer reviewe

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Skewness and kurtosis of solar wind proton distribution functions: The normal inverse-Gaussian model and its implications

    Get PDF
    CONTEXT: In the solar wind (SW), the particle distribution functions are generally not Gaussian. They present nonthermal features that are related to underlying acceleration and heating processes. These processes are critical in the overall dynamics of this expanding astrophysical fluid. AIMS: The Proton Alpha Sensor (PAS) on board Solar Orbiter commonly observes skewed proton distributions, with a more populated high-energy side in the magnetic field direction than the Gaussian distribution. Our objectives are: (1) to identify a theoretical statistical function that adequately models the observed distributions and (2) to use its statistical interpretation to constrain the acceleration and heating processes. METHODS: We analyzed the 3D velocity distribution functions (VDFs) measured by PAS and compared them to model statistical functions. RESULTS: We show that the normal inverse Gaussian (NIG), a type of hyperbolic statistical distribution, provides excellent fits of skewed and leptokurtic proton distributions. NIG can model both the core distribution and the beam, if present. We propose an interpretation that is inspired by the mathematical formulation of the NIG. It assumes that the acceleration or heating mechanism can be modeled as a drifting diffusion process in velocity space, controlled (or subordinated) by the time of interaction of the particles with “accelerating structures”. The probability function of the interaction time is an inverse Gaussian (IG), obtained by considering a random drift across structures of a given size. The control of the diffusion by interaction times that follow an IG probability function formally defines the NIG distribution. Following this model, we show that skewness and kurtosis can be used to estimate the kinetic and thermal energy gains provided by the interaction with structures. For example, in the case studies presented here, the analyzed populations would have gained kinetic energy representing approximately two to four times their thermal energy, with an increase in velocity – due to acceleration – of from one-tenth to one-third of the observed flow velocity. We also show that the model constrains the initial temperature of the populations. CONCLUSIONS: Overall, the NIG model offers excellent fits of the observed proton distributions. Combining the skewness and the kurtosis, it also leads to constraints in the part of acceleration and heating due to the interactions with structures in the formation of the proton populations. We suggest that these effects add to the classical thermal evolution of the bulk velocity and temperature resulting from SW expansion

    Magnetic reconnection as a mechanism to produce multiple protonpopulations and beams locally in the solar wind

    Get PDF
    Context. Spacecraft observations early revealed frequent multiple proton populations in the solar wind. Decades of research on their origin have focused on processes such as magnetic reconnection in the low corona and wave-particle interactions in the corona and locally in the solar wind.Aims.This study aims to highlight that multiple proton populations and beams are also produced by magnetic reconnection occurring locally in the solar wind. Methods. We use high resolution Solar Orbiter proton velocity distribution function measurements, complemented by electron and magnetic field data, to analyze the association of multiple proton populations and beams with magnetic reconnection during a period of slow Alfv\'enic solar wind on 16 July 2020. Results. At least 6 reconnecting current sheets with associated multiple proton populations and beams, including a case of magnetic reconnection at a switchback boundary, are found during this day. This represents 2% of the measured distribution functions. We discuss how this proportion may be underestimated, and how it may depend on solar wind type and distance from the Sun. Conclusions. Although suggesting a likely small contribution, but which remains to be quantitatively assessed, Solar Orbiter observations show that magnetic reconnection must be considered as one of the mechanisms that produce multiple proton populations and beams locally in the solar wind
    corecore