1,966 research outputs found

    Designer quantum states of matter created atom-by-atom

    Full text link
    With the advances in high resolution and spin-resolved scanning tunneling microscopy as well as atomic-scale manipulation, it has become possible to create and characterize quantum states of matter bottom-up, atom-by-atom. This is largely based on controlling the particle- or wave-like nature of electrons, as well as the interactions between spins, electrons, and orbitals and their interplay with structure and dimensionality. We review the recent advances in creating artificial electronic and spin lattices that lead to various exotic quantum phases of matter, ranging from topological Dirac dispersion to complex magnetic order. We also project future perspectives in non-equilibrium dynamics, prototype technologies, engineered quantum phase transitions and topology, as well as the evolution of complexity from simplicity in this newly developing field

    Magneto-quantum oscillations of the conductance of a tunnel point-contact in the presence of a single defect

    Get PDF
    The influence of a quantizing magnetic field HH to the conductance of a tunnel point contact in the presence of the single defect has been considered. We demonstrate that the conductance exhibits specific magneto-quantum oscillations, the amplitude and period of which depend on the distance between the contact and the defect. We show that a non-monotonic dependence of the point-contact conductance results from a superposition of two types of oscillations: A short period oscillation arising from electron focusing by the field HH and a long period oscillation of Aharonov-Bohm-type originated from the magnetic flux passing through the closed trajectories of electrons moving from the contact to the defect and returning back to the contact.Comment: 13 pages, 3 figure

    Exploring the phase diagram of the two-impurity Kondo problem

    Full text link
    A system of two exchange-coupled Kondo impurities in a magnetic field gives rise to a rich phase space hosting a multitude of correlated phenomena. Magnetic atoms on surfaces probed through scanning tunnelling microscopy provide an excellent platform to investigate coupled impurities, but typical high Kondo temperatures prevent field-dependent studies from being performed, rendering large parts of the phase space inaccessible. We present an integral study of pairs of Co atoms on insulating Cu2N/Cu(100), which each have a Kondo temperature of only 2.6 K. In order to cover the different regions of the phase space, the pairs are designed to have interaction strengths similar to the Kondo temperature. By applying a sufficiently strong magnetic field, we are able to access a new phase in which the two coupled impurities are simultaneously screened. Comparison of differential conductance spectra taken on the atoms to simulated curves, calculated using a third order transport model, allows us to independently determine the degree of Kondo screening in each phase.Comment: paper: 14 pages, 4 figures; supplementary: 3 pages, 1 figure, 1 tabl

    Controlled complete suppression of single-atom inelastic spin and orbital cotunnelling

    Get PDF
    The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom's spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom's environment, using scanning tunnelling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chain on a Cu2_2N substrate, indicates a structural transition affecting the dz_z2^2 orbital, effectively cutting off the STM tip from the spin-flip cotunnelling path.Comment: 4 figures plus 4 supplementary figure

    Vibrationally Induced Two-Level Systems in Single-Molecule Junctions

    Get PDF
    Single-molecule junctions are found to show anomalous spikes in dI/dV spectra. The position in energy of the spikes are related to local vibration mode energies. A model of vibrationally induced two-level systems reproduces the data very well. This mechanism is expected to be quite general for single-molecule junctions. It acts as an intrinsic amplification mechanism for local vibration mode features and may be exploited as a new spectroscopic tool.Comment: 4 pages, 4 figure

    Detection of Cherenkov light from air showers with Geiger-APDs

    Full text link
    We have detected Cherenkov light from air showers with Geiger-mode APDs (G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several advantages compared to conventional photomultiplier tubes in the field of ground-based gamma-ray astronomy. In a field test with the MAGIC telescope we have tested the efficiency of a G-APD / light catcher setup to detect Cherenkov light from air showers. We estimate a detection efficiency, which is 60% higher than the efficiency of a MAGIC camera pixel. Ambient temperature dark count rates of the tested G-APDs are below the rates of the night sky light background. According to these recent tests G-APDs promise a major progress in ground-based gamma-ray astronomy.Comment: 4 pages, 5 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Observation of electronic and atomic shell effects in gold nanowires

    Get PDF
    The formation of gold nanowires in vacuum at room temperature reveals a periodic spectrum of exceptionally stable diameters. This is identified as shell structure similar to that which was recently discovered for alkali metals at low temperatures. The gold nanowires present two competing `magic' series of stable diameters, one governed by electronic structure and the other by the atomic packing.Comment: 4 pages, 4 figure

    Placing the RPL32 Promoter Upstream of a Second Promoter Results in a Strongly Increased Number of Stably Transfected Mammalian Cell Lines That Display High Protein Expression Levels

    Get PDF
    The use of high stringency selection systems commonly results in a strongly diminished number of stably transfected mammalian cell lines. Here we placed twelve different promoters upstream of an adjacent primary promoter and tested whether this might result in an increased number of colonies; this is in the context of a stringent selection system. We found that only the promoter of the human ribosomal protein, RPL32, induced a high number of colonies in CHO-DG44 cells. This phenomenon was observed when the RPL32 promoter was combined with the CMV, SV40, EF1-α, and the β-actin promoters. In addition, these colonies displayed high protein expression levels. The RPL32 promoter had to be functionally intact, since the deletion of a small region upstream of the transcription start site demolished its positive action. We conclude that adding the RPL32 promoter to an expression cassette in cis may be a powerful tool to augment gene expression levels
    corecore