
Magneto-quantum oscillations of the conductance of a tunnel point contact
in the presence of a single defect

Ye. S. Avotina,1,2 Yu. A. Kolesnichenko,1,2 A. F. Otte,2 and J. M. van Ruitenbeek2

1B. I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
47, Lenin Avenue, 61103 Kharkov, Ukraine

2Kamerlingh Onnes Laboratorium, Universiteit Leiden, Postbus 9504, 2300 Leiden, The Netherlands
�Received 17 October 2006; revised manuscript received 5 February 2007; published 9 March 2007�

The influence of a strong magnetic field H to the conductance of a tunnel point contact in the presence of a
single defect has been considered. We demonstrate that the conductance exhibits specific magneto-quantum
oscillations, the amplitude and period of which depend on the distance between the contact and the defect. We
show that a nonmonotonic dependence of the point-contact conductance results from a superposition of two
types of oscillations: A short period oscillation arising from the electrons being focused by the field H and a
long period oscillation originated from the magnetic flux passing through the closed trajectories of electrons
moving from the contact to the defect and returning back to the contact.
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I. INTRODUCTION

The presence of a single defect in the vicinity of a point
contact manifests itself in an oscillatory dependence of the
conductance G on the applied voltage V and the distance
between the contact and the defect. Conductance oscillations
originate from quantum interference between electrons that
pass directly through the contact and electrons that are back-
scattered by the defect and again forward scattered by the
contact. The reason of the oscillations of G�V� is a depen-
dence of the phase shift between two waves on the electron
energy, which depends on the bias eV. This effect has been
observed experimentally1–4 and investigated theoretically.5–9

In an earlier paper5 we demonstrated that this G�V� depen-
dence can actually be used to determine the exact location of
a defect underneath a metal surface by means of scanning
tunneling microscopy �STM�. A more elaborate version of
this method9 that takes the Fermi surface anisotropy into
account corresponds quite well with experimental
observations.10 Here we consider another way to change the
phase shift between the interfering waves: By applying an
external magnetic field H we expect to observe oscillations
of the conductance as a function of the field H.

It is well known that a high magnetic field H fundamen-
tally changes the kinetic and thermodynamic characteristics
of a metal.11,12 When speaking of a high magnetic field one
usually assumes two conditions to be fulfilled. The first one
is that the radius of the electron trajectory rH is much smaller
than the mean free path of electrons l. This condition implies
that electrons move along spiral trajectories between two
scattering events, such as by defects or phonons. This change
in character of the electron motion results, for example, in
the phenomenon of magnetoresistance.11,12 The second con-
dition requires that the distance between the magnetic quan-
tum levels, the Landau levels, �� �� is the frequency of the
electron motion in the magnetic field H� is larger than the
temperature kBT. Under this condition oscillatory quantum
effects, such as the de Haas–van Alphen and Shubnikov–de
Haas oscillations, can be observed.11,12 At which actual value
the field H can be identified as a high depends on the purity

of the metal, its electron characteristics and the temperature
of the experiment. Typically, the high field condition requires
field values above 10 T for metals at low temperatures, T
�1 K, while for a pure bismuth monocrystal �a semimetal� a
field of H�0.1 T is sufficient to satisfy the two conditions
mentioned.

A high magnetic field H influences the current spreading
of the electrons passing through the contact. If the vector H
is parallel to the contact axis, the electron motion becomes
quasi-one-dimensional. Electrons then move inside a “tube”
with a diameter defined by the contact radius a and the radius
rH. The three-dimensional spreading of the current is restored
by elastic and inelastic scattering processes. As shown in
Ref. 13, for rH�a and rH� l, the contact resistance in-
creases linearly with the magnetic field, in contrast to bulk
samples for which the resistance increases as H2. The
Shubnikov–de Haas oscillations in the resistance of “large”
contacts �defined by a��F, with �F the electron Fermi wave
length� were considered theoretically in Refs. 14 and 15.
Experimentally, a point-contact magnetoresistance linear in
H as well as Shubnikov–de Haas oscillations were observed
for bismuth.16

In this paper we consider the influence of a high magnetic
field on the linear conductance �Ohm’s law approximation
V→0� of a tunnel point contact in the presence of a single
defect, with the magnetic field directed along the contact
axis. We demonstrate that the conductance exhibits magneto-
quantum oscillations, the amplitude and period of which de-
pend on the distance between the contact and the defect. We
show that the nonmonotonic dependence of the conductance
G�H� results from the superposition of two types of oscilla-
tions: �a� A short period oscillation arising from electrons
being focused by the field H and �b� a long period oscillation
of Aharonov-Bohm type originating from the magnetic flux
passing through the area enclosed by the electron trajectories
from contact to defect and vice versa.

In Sec. II we will discuss the model of a tunnel point
contact and find the electron wave function in the limit of a
high potential barrier at the contact. The interaction of the
electrons with a single impurity placed nearby the contact is
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taken into account by perturbation theory, with the electron-
impurity interaction as the small parameter. A general ana-
lytical expression for the dependence of conductance G�H�
on the magnetic field H is obtained in Sec. III. It describes
G�H� in terms of the distance between contact and defect and
the value of the magnetic field. The physical interpretation of
the general expression for the conductance can be obtained
from the semiclassical asymptotics given in this section. In
Sec. IV we conclude by discussing our results and the feasi-
bility of finding the predicted effects experimentally.

II. MODEL AND ELECTRON WAVE FUNCTION

Let us consider a point contact centered at the point r
=0, as illustrated in Fig. 1. We use cylindrical coordinates
r= �� ,� ,z� with the z axis directed along the axis of the
contact. The potential barrier in the plane z=0 is taken to be
defined by a � function of the form

U��,�,z� = Uf�����z� . �1�

In order to allow for the current to flow only through a small
region near the point r=0 we choose the model function

f��� = e�2/a2
, �2�

where the small a specifies the characteristic radius of the
contact. A pointlike defect is placed at the point r=r0 in
vicinity of the interface in the half space z�0, see Fig. 1.
The scattering of electrons with the defect is described by a
potential D��r−r0 � �, which is localized near the point r=r0

in a small region with a characteristic radius, which is of the
order of the Fermi wave length �F. The screened Coulomb
potential is an example of such kind of dependence of
D�r�.17 It is widely used to describe charge point defects
�impurities� in metals.

We assume that the transmission probability of electrons
through the barrier, Eq. �1�, is small such that the applied
voltage drops entirely over the barrier. We can then take the
electric potential as a step function V�z�=V	�−z�. The mag-
netic field is directed along the contact axis H= �0,0 ,H�. In
cylindrical coordinates the vector potential A has compo-
nents A�=H� /2, Az=A�=0.

The Schrödinger equation for the wave function 
�� ,� ,z�
is given by

−
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�2 + U��,z� + D��,�,z��
 = �� + �BH�
 ,

�3�

where �=eH /m*c; � and m* are the electron energy and
effective mass, respectively, and e is the absolute value of the
electron charge, �= ±1 corresponds to different spin direc-
tions, B=e� /2m0c is the Bohr magneton, where m0 is the
free electron mass. Hereinafter assuming that BH /�F
��F /rH�1 we will neglect by the term �BH in Eq. �3�.

In order to solve Eq. �3� in the limit of a high potential
barrier we use the method that was developed in Refs. 5 and
18. To first order approximation in the small parameter
�pz /m*U�1, which leads to a small electron tunneling
probability T	��pz /m*U�2�1, the wave function 
 can be
written in the form


��,�,z� = 
0��,�,z� + ��−���,�,z� �z � 0� , �4�


��,�,z� = ��+���,�,z� �z � 0� , �5�

where 
0 does not depend on U, but ��±�
1/U. In Eq. �4�

0 is the wave function in the absence of tunneling, for U
→�. It satisfies the boundary condition 
0�� ,� ,0�=0 at the
interface. Using the well known solution of the Schrödinger
equation for an electron in a magnetic field19 the energy
spectrum and wave function 
0 are given by

� = �mn +
pz

2

2m* , �mn = � ��n +
m + �m� + 1

2
� , �6�


0��,�,z� = eim��e�i/��pzz − e−�i/��pzz�Rnm��� , �7�

where

Rnm��� = � �n�!
��m� + n�!�1/2

exp�−
�

2
���m�/2Ln

�m���� . �8�

Here, �=�2 /2aH
2 and Ln

�m���� are the generalized Laguerre
polynomials, aH=�� /m*� is the quantum magnetic length,
n=0,1 ,2 , . . . , m=0, ±1, ±2, . . ., and pz is the electron mo-
mentum along the vector H. The functions �8� are orthogo-
nal. We use a normalization of the wave function �8� such
that Rn0�0�=1.

The function ��−��� ,� ,z� in Eq. �4� describes the correc-
tion to the reflected wave as a result of a finite tunneling
probability and ��+��� ,� ,z�, Eq. �5�, is the wave function for
the electrons that are transmitted through the contact. The
wave functions �4� and �5� should be matched at the interface
z=0. For large U the resulting boundary conditions for the
functions ��−� and ��+� become18

��−���,�,0� = ��+���,�,0� , �9�

FIG. 1. Model of a tunnel point contact. The upper and lower
metal half-spaces are separated by an inhomogeneous barrier �Eq.
�1� that allows electron tunneling mainly in a small region with a
characteristic radius a, which defines the tunneling point contact. A
single defect is placed inside the upper metal at the position r0.
Electron trajectories in the magnetic field are shown schematically.
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ipz =
m*U

�
f�����+���,�,0� . �10�

In order to proceed with further calculations we assume that
the electron-impurity interaction is small and use perturba-
tion theory.5 In the zeroth approximation in the defect scat-
tering potential the function �0

�+� can be found by means of
the expansion of the function �0

�+��� ,� ,0� over the full set of
orthogonal functions Rnm���, Eq. �8�, and �0

�+��� ,� ,z� is
given by

�0
�+���,�,z� = −

i � pz

m*U

1

2�aH
2

� �
n�=0

�

Fnn�,meim�Rn�m���exp� i

�
pz,n�mz� ,

�11�

for z�0. Here,

pz,nm = �2m*�� − �nm� �12�

and

Fnn�,m = �
0

a

d��f���Rnm���Rn�m
* ��� . �13�

For the model function f��� of Eq. �2� the integral �13� can
be evaluated and the function Fnn�,m takes the form

Fnn�,m = � ��m� + n� ! ��m� + n��!
�n� ! �n��!

�1/2

�
�a2

��m��!� a2

2aH
2 ��m��1 −

a2

2aH
2 ��m�+1+n+n�

� 2F1��m� + 1 + n�, �m� + 1 + n, �m� + 1,
a4

4aH
4 � ,

�14�

where 2F1�a ,b ,c ,�� is a hypergeometric function. By using
the procedure developed in Ref. 5 we find the wave function
��+��� ,� ,z� at z�z0 accurate to g

��+���,�,z� = �0
�+���,�,z� +

im*g

2��

1

2�aH
2 �0

�+���0,�0,z0�

� �
n�=0

�

�
m�=−�

�
eim���−�0�

pz�
Rn�m����Rn�m�

* ��0�

��e�i/��pz��z−z0� − e�i/��pz��z+z0�� , �15�

where

g =� dr�D��r� − r0�� �16�

is the interaction constant for the scattering of the electron
with the impurity. We proceed in Sec. III to calculate the
total current through the contact and the point-contact con-
ductance, using the wave function �15�.

III. TOTAL CURRENT AND POINT-CONTACT
CONDUCTANCE

The electrical current I�H� can be evaluated from the elec-
tron wave functions of the system 
.20 We shall also assume
that the applied bias eV is much smaller than the Fermi en-
ergy �F and calculate the conductance in linear approxima-
tion in V. In this approximation we find

I�H� = −
2�e�3HV

�2� � �2c
�
n=0

�

�
m=−�

� � dpzInm,pz
	�pz�

�nF���
��

.

�17�

Here

Inm,pz
=

�

m*�
0

2�

d��
0

�

�d� Re����+��*���+�

�z
� �18�

is the probability current density in the z direction, integrated
over plane z�const; nF��� is the Fermi distribution function.
For a small contact, a�aH, Eq. �17� can be simplified. The
largest term in the parameter a2 /2aH

2 �1 in Eq. �17� corre-
sponds to m=0, for which Eq. �14� takes the form Fnn�,0
	�a2.

After space integration over a plane at z�z0, where the
wave function �15� can be used, we obtain the current den-
sity �18�. At low temperatures, T→0, the integral over pz in
Eq. �17� can be easily calculated. The point-contact conduc-
tance G is the first derivative of the total current I over the
voltage V:

FIG. 2. Oscillatory part of the conductance for a defect placed
on the contact axis �0=0, z0=30�F. The full curve is a plot for Eq.
�19�, while the dotted curve shows the component �G2 for the
semiclassical approximation, Eq. �29�, and the dashed curve shows
the component �G0, Eq. �25�. The constant of electron-defect inter-
action is taken as g̃=0.5. The field scale is given in units �F /rH

= �e� / pF
2c�H.
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G�H� = Gc�1 +
gm*

4�3N��F��2aH
4 Im� �

n�=0

nmax��F�

���F,n�,r0��
� Re �

n�=0

�

���F,n�,r0�� . �19�

Here

���,n,r0� = Rn0��0�exp� i

�
pz,n0z0� , �20�

N��� is the number of electron states per unit volume,

N��,H� =
4�e�H

�2� � �2c
�
n=0

nmax���

�2m�� − �n0� , �21�

and nmax���=� �

��
 is the maximum value of the quantum

number n for which �n0��, and �x is the integer part of the
number x. The constant Gc is the conductance in absence of
a defect

Gc�H� = �3e2�3�a2N��F�
2m*U

�2

. �22�

The second term in brackets in Eq. �19� describes the
oscillatory part of the conductance �G�H�=G�H�−Gc�H�
that results from the scattering by the defect. This term is
plotted in Fig. 2 for a defect placed on the contact axis �solid
curve�. We find an oscillatory dependence which is domi-
nated by a single period, although the shape is not simply
harmonic. However, this dependence becomes quite compli-
cated and contains oscillations having different periods when
the defect is not sitting on the contact axis, as illustrated by
the example plotted in Fig. 3 �solid curve� for a defect placed
at �� ,z�= �50,30� �in units �F= � / pF, with pF=�2m*�F the
Fermi momentum�. The physical origin of the oscillations
can be extracted from the semiclassical asymptotics of Eq.
�19�.

For magnetic fields that are not too high one typically has
a large number of Landau levels, nmax��F�	�F / ��
= �aH /�2�F�2�1, in which case the semiclassical approxi-
mation can be used. Some details of the calculations are
presented in the Appendix. The asymptotic form of the ex-
pression for the conductance �19� can be written as a sum of
four terms

G�H� = Gc0 + �G0 + �G1 + �G2. �23�

In leading approximation in the small parameter �� /�F the
conductance �22� does not depend on the magnetic field

Gc0 =
4e2

9��
T�pF�� pFa

�
�4

, �24�

where T�pF�= ��pF /m*U�2�1 is the transmission coefficient
of the tunnel junction. There is an oscillatory contribution
�G0 to the conductance that originates from the step-wise
dependence of the number of states N��F� on the magnetic
field, and the conductance undergoes oscillations having the
periodicity of the de Haas–van Alphen effect

�G0 =
9

2
Gc0��F

aH
�3

�
k=1

�
�− 1�k

k3/2 sin��k
aH

2

�F
2 −

�

4
� . �25�

The other two terms in Eq. �23� �G1 and �G2 result from the
electron scattering on the defect.

Using the results presented in the Appendix, Eq. �A5�, we
find for the first oscillation,

�G1�H,r0� = − Gc0g̃
z0

2�F
2

r0
4 sin�2pFr0

�
− 2�

�

�0
� , �26�

where g̃=3gm*pF /4��3 is a dimensionless constant repre-
senting the defect scattering strength and �0=2��c /e is the
flux quantum. The flux,

� = HSpr, �27�

is given by the field lines penetrating the area of the projec-
tion Spr=2Sseg on the plane z=0 of the trajectory of the elec-
tron moving from the contact to the defect and back �see Fig.
1�,

Sseg = r2��st − sin 2�st� . �28�

Sseg is the area of the segment formed by the chord of length
�0 and the arc of radius r=rH sin �st, with �st is the angle
between the vector r0 and z axis, sin �st=�0 /r0, rH
=cpF /eH. The oscillation �G1 disappears when the defect
sits on the contact axis, �0=0. Note that for H→0 Eq. �26�
reduces to the expression obtained before5 for the point-
contact conductance in the presence of a defect.

An analytic expression for the last term �G2�H ,r0� in Eq.
�23� can be written by use of Eq. �A8� as

FIG. 3. Oscillatory part of the conductance of a tunneling point
contact with a single defect placed at �0=50�F, z0=30�F. The full
curve is a plot for Eq. �19�, while the dashed curve shows the
component �G1 for the semiclassical approximation �26�. The field
scale is given in units �F /rH= �e� / pF

2c�H; g̃=0.5.
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�G2�H,�0 = 0,z0�

= Gc0g̃��F

aH
�3� �

k=�z0/2�rH

�

�− 1�k 1

k3/2

�cos� pFr0

�
+ �k

aH
2

�F
2 +

z0
2

4�kaH
2 �

+
z0

2�2

aH
2 ��F

aH
� �

k,k�=�z0/2�rH

�

�− 1�k+k� 1

�kk��3/2

� sin��k
aH

2

�F
2 +

z0
2

4�kaH
2 �cos��k�

aH
2

�F
2 +

z0
2

4�k�aH
2 �� .

�29�

As a consequence of the decreasing amplitudes of the sum-
mands with k and k� the main contribution to the conduc-
tance oscillations results from the first term in the braces,
with k= �z0 /2�rH. Comparing the dependence G�H� that is
obtained from Eq. �19� with the asymptotic expressions �29�
in Fig. 2, and Eq. �26� in Fig. 3, we observe the good agree-
ment between the exact solution and results obtained in the
framework of semiclassical approximation. This agreement
allows us to explain the nature of the complicated oscilla-
tions of the conductance G�H�.

IV. DISCUSSION

The de Haas–van Alphen effect and the Shubnikov–de
Haas effect are quite different manifestations of the Landau
quantization of the electron energy spectrum in a magnetic
field. The de Haas–van Alphen effect is a thermodynamic
property that results from singularities in the electron density
of states while the Shubnikov–de Haas effect is a manifesta-
tion of the Landau quantization due to corrections in the
electron scattering.11,12 It is known that a calculation of the
metallic conductivity in a strong magnetic field in the ap-
proximation of a constant mean free scattering time gives an
incorrect answer for the amplitude of the oscillations.22 The
correct amplitude can be obtained when the quantization is
taken into account in the collision term of the quantum ki-
netic equation.23

We have considered the limiting case when there is only
one scatterer and found specific magneto-quantum oscilla-
tions, the amplitude of which depends on the position of the
defect. In our system a few quantum effects manifest them-
selves at the same time: �1� the Landau quantization, �2� the
quantum interference between the wave that is directly trans-
mitted through the contact and the partial wave that is scat-
tered by the contact and the defect, �3� the effect of the
quantization of the magnetic flux. As a consequence the con-
ductance G�H�, Eq. �19�, is a complicated nonmonotonous
function of the magnetic field, see Figs. 2 and 3.

First of all, Landau quantization results in the oscillations
�G0�H� of Eq. �25�, having the usual period of the
Shubnikov–de Haas �or de Haas–van Alphen� oscillations.
From the point of view of the first paragraph of this section,
the oscillatory part of the conductance �25� is not a manifes-

tation of the Shubnikov–de Haas effect but it is due to the
oscillations in the number of states that modify the conduc-
tivity of the tunnel junction.

At H=0 the quantum interference between partial electron
waves �the directly transmitted wave and the wave scattered
by the defect and reflected back to the contact� leads to an
oscillatory dependence of the conductance as a function of
the position of the defect5 and the period of this oscillation
can be found from the phase shift ��=2pFr0 /� between the
two partial waves. Experimentally the oscillation can be ob-
served as a function of the bias voltage, which changes the
momentum of the incoming electrons. In a magnetic field the
electron trajectory becomes curved �see trajectory 2 in Fig.
1� and the phase difference of two partial waves mentioned
above is modified as

�� = 2pFr0/ � − 2��/�0, �30�

where � is the magnetic flux through the projection Spr �see
Fig. 1� of the closed electron trajectory onto a plane perpen-
dicular to the vector H. For this reason the conductance un-
dergoes oscillations with a period � /�0. The sign in front of
the second term in Eq. �30� is defined by the negative sign of
the electron charge. The resulting oscillations in the conduc-
tance �G1 �26� have a nature similar to the Aharonov-Bohm
effect and are related to the quantization of the magnetic flux
through the area enclosed by the electron trajectory. In Fig. 3
the full expression for the oscillatory part �G�H� of the con-
ductance �the second term in Eq. �19� is compared with the
semiclassical approximation �G1�H ,�0 ,z0�, Eq. �26�. The
long period oscillation is a manifestation of the flux quanti-
zation effect and is well reproduced by the semiclassical ap-
proximation. The short-period oscillations originate from the
effect of the electron being focused by magnetic field.

In the absence of a magnetic field only those electrons
that are scattered off the defect in the direction directly op-
posite to the incoming electrons can come back to the point
contact. When H�0 the electrons move along a spiral tra-
jectory �trajectory 1 in Fig. 1� and may come back to the
contact after scattering under a finite angle to the initial di-
rection. For example, if the defect is placed on the contact
axis an electron moving from the contact with a momentum
pz= pF along the magnetic field returns to the contact when
the z component of the momentum pzk=z0m*� /2�k, for in-
teger k. For these orbits the time of the motion over a dis-
tance z0 in the z direction is a multiple of the cyclotron
period TH=2� /�. Thus, after k revolutions the electron re-
turns to the contact axis at the point z=0. The phase which
the electron acquires along the spiral trajectory is composed
of two parts, ��=��1+��2. The first, ��1= pzkz0 /� is the
“geometric” phase accumulated by an electron with momen-
tum pzk over the distance z0. The second, ��2
=�k�eHrk

2 /c� � is the phase acquired during k rotations in
the field H, where rk=c�pF

2 − pzk
2 /eH is the radius of the spi-

ral trajectory. Substituting pzk and rk in the equation for ��
we find

�� = �kaH
2 /�F

2 + z0
2/4�kaH

2 . �31�

This is just the phase shift that defines the period of oscilla-
tion of the first term in the contribution �G2 �29� to the
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conductance. It describes a trajectory which is straight for the
part from the contact to the defect and spirals back to the
contact by k windings. The second term in Eq. �29� corre-
sponds to a trajectory consisting of helices in the forward
and reverse paths, with k and k� coils, respectively.

Note that, although the amplitude of the oscillation �G2
�29� is smaller by a factor �� /�F than the amplitude of the
contribution �G1 �26�, the first depends on the depth of the
defect as z0

−3/2 and z0
−1 while �G1
z0

−2. The slower decreas-
ing of the amplitude for �G2 is explained by the effect of
focusing of the electrons in the magnetic field.

In a high magnetic field the selection of semiclassical tra-
jectories that connect the contact and the defect is restricted
by the quantization condition. The projection of the momen-
tum pz,n �12� in the direction of the vector H is quantized and
for a fixed quantum number n pz,n depends on H. For in-
creasing magnetic field the distance between the Landau lev-
els, ��, increases and pz,n decreases until �n0=�F. As a re-
sult, for sufficiently large z0 each term in the conductance
�19� corresponding to the set of quantum numbers �n ,n��
undergoes one more oscillation. This is confirmed by the
results presented in Fig. 2, in which the dependencies of the
�G�H� �19� and the semiclassical asymptotic �G2�H ,�0

=0 ,z0� �29� are shown for a position of the defect on the
contact axis ��0=0�.

In order to observe experimentally the predicted effects it
is necessary to satisfy a few conditions: �a� The distance
between Landau levels �� is larger than the temperature
kBT. This is the condition for observing effects of the quan-
tization of the energy spectrum. �b� The radius of electron
trajectory rH and the distance between the contact and the
defect r0 are much smaller than the mean free path of the
electrons for electron-phonon scattering. This condition is
necessary for the realization of the almost ballistic electron
kinetics �the scattering is caused only by a single defect� that
has been considered. �c� For the observation of the
Aharonov-Bohm–type oscillations the position �0 of the de-
fect in the plane parallel to the interface must be smaller than
rH, i.e., the defect must be situated inside the “tube” of elec-
tron trajectories passing through the contact. At the same
time the inequality �0�aH=�rH�F must hold in order that a
magnetic flux quantum �0 is enclosed by the area of the
closed trajectory. �d� The distance r0 should not be very large
on the scale of the Fermi wave length, because in such case
the amplitude of the quantum oscillations resulting from the
electron scattering by the defect becomes small. Although
these conditions restrict the possibilities for observing the
oscillations severely, all conditions can be realized, e.g., in
single crystals of semimetals �such as Bi, Sb, and their or-
dered alloys� where the electron mean free path can be up to
millimeters and the Fermi wave length �F
10−8 m. Also, as
possible candidates for the observation of predicted oscilla-
tions one may consider the metals of the first group, the
Fermi surface of which has small pockets with effective
mass m*�10−2–10−3m0.11 For estimating the periods and
amplitudes of the oscillations we shall use the characteristic
values of the Fermi momentum pF and effective �cyclotron�
mass m* for the central cross section of the electron ellip-
soids of the Bi Fermi surface, pF�0.6�10−26 kg m/s and

m* /m0�0.008.25 For such parameters the magnetic field of
H=0.03 in units �F /rH shown in Figs. 2 and 3 corresponds to
H�0.1 T.

The amplitude of the conductance oscillations depends
mainly on the constant of electron-defect interaction g �16�,
which can be estimated using an effective electron scattering
cross section 
�F

2 . In the plots of Figs. 2 and 3 we used a
typical value for the dimensionless constant g̃
0.5. The
long-period oscillations �see Fig. 3� require a large �0, the
distance between the contact and the defect in the plane of
interface, and their relative amplitude is of the order of
10−3Gc0. The amplitude of short-period oscillations for such
arrangement of the contact and the defect is small,

10−4Gc0, but it increases substantially and becomes
10−3Gc0 if the defect is situated at the contact axis �see Fig.
2�. The amplitude of the oscillations �25� having de Haas–
van Alphen period is proportional to the small parameter
��� /�F�3/2, which for H
0.1T is of the order of 
10−3Gc0.
Comparing this to previous STS experiments,26 where
signal-to-noise ratios of 5�10−4 �at 1 nA, 400 Hz sample
frequency� have been achieved, it should be possible to ob-
serve the predicted conductance oscillations.

The predicted oscillations �26� and �29� are not periodic
in H nor in 1/H. Their typical periods can be estimated as a
difference �H between two nearest-neighbor maxima. For
the short-period oscillations �29� we find

��H

H
�

SP
�

2�F
2

aH
2 �1 − � z0�F

2�aH
2 �2�−1

. �32�

The period �32� depends on the position of the defect. It is
larger than the period of de Haas–van Alphen oscillation
��H /H�dHvA�2�F

2 /aH
2 . Both of these periods are of the same

order of magnitude as can be seen from Fig. 2. For a semi-
metal ��H�SP
10−2 T in a field of H
0.1 T. The charac-
teristic interval of the magnetic fields for the long-period
oscillations is ��H /H�LP
0.1 T as can be seen from Fig. 3.

The experimental study of the magneto-quantum oscilla-
tions of the conductance of a tunnel point contact considered
in this paper may be used for a determination of the position
of defects below a metal surface, similar to the current-
voltage characteristics considered in Ref. 5. Although the
dependence G�H� with magnetic field is more complicated
than the dependence G�V� on the applied bias, in some cases
such investigations may have advantages in comparison with
the methods proposed in Ref. 5 because with increasing volt-
age the inelastic mean free path of the electrons decreases,
which restricts the use of voltage dependent oscillations.
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APPENDIX: SUMMATION OVER QUANTUM NUMBERS
IN SEMICLASSICAL APPROXIMATION

Here we illustrate the procedure for the calculations of the
correction to the conductance due to the presence of the de-
fect in the semiclassical approximation. At nmax��F��1 in
Eq. �19� the summation over discrete quantum numbers n�
and n� can be carried out using the Poisson summation for-
mula. Let us consider the sum of the functions ���F ,n ,r0�
�20�

S = �
n=0

nmax��F�

���F,n,r0�

= S1 + S2 = �
0

nmax

dn���F,n,r0�

+ �
k=−�,k�0

�

�− 1�k�
0

nmax

dn���F,n,r0�e2i�kn. �A1�

By using the Tricomi asymptotic for the Laguerre polynomi-
als at n�1 �Ref. 24� we find an expression for the first term
S1 in Eq. �A1� for fields that are not too high such that n is
large and �0 / �2aH��2n+1��1,

S1 �� 2

�
�

0

nmax dn
��2n + 1�sin 2�

�cos��2n + 1�2� − �n +
1

2
��2� − sin 2���

� exp� i

�
z0�2m*��F − � ��n +

1

2
��� , �A2�

where

sin2� =
�0

2

4aH
2 �2n + 1�

. �A3�

For large n the functions in the integrand of Eq. �A2� rapidly
oscillate and S1 can be calculated by the method of stationary
phase points. As can be seen from Eq. �A3�, for n
nmax

�F / �� we have sin �	�0 /2rH, where rH=vF /� is the
radius of electron trajectory. For �0�rH in Eq. �A2� we
can make the approximations n�
�0 /�F, n�2�−sin 2��

��0 /rH�2��0 /�F�, and �z0 / � ��2m*��F− ���n+ 1

2
�
z0 /

�F. If �0 or z0 is much larger than �F, and the second term
under the cosine in Eq. �A2� is of order unity so that it can be

considered as a slowly varying function, the stationary phase
point of the integral �A2� is given by

nst �
�F

��

�0
2

r0
2 , �A4�

where r0=��0
2+z0

2 is the distance between the point contact
and the defect. The asymptotic value of S1 takes the form

S1 � −
irHz0

r0
2 exp� i

�
pFr0 − i�

�

�0
� , �A5�

where � is given by Eq. �27�.
The second term S2 in the sum �A1� describes an oscilla-

tion of a different type. We consider this term for a defect
position with �0=0. Replacing the integration over n by the
integration over momentum along the magnetic field pn

=�2m*��F− ���n+ 1
2

� we rewrite the second term in Eq.
�A1� in the form

S2 � �
k=−�,k�0

�

�− 1�k�
0

�2m*�F pndpn

m* � �

�exp�2�ki� �F

��
−

pn
2

2m* � �
� +

i

�
pnz0� . �A6�

The stationary phase points pn= pst of the integrals �A6� are

pst =
z0m*�

2�k
. �A7�

Note that the stationary phase point �A7� exists if k�0 and
z0�2�krH. The momenta �A7� have a clear physical mean-
ing: The time t=z0m* / pst of the classical motion of electron
from the contact to the defect is an integer multiple of the
period TH=2� /� of the motion in the field H, t=kTH. This
is the same condition as is applicable for longitudinal elec-
tron focusing,21 in which case the electrons move across a
thin film from a contact on one side to a contact on the
opposite surface and the magnetic field is directed along the
line connecting the contacts. The asymptotic expression for
S2 �A6� is given by

S2 �
z0

2�aH
�

k=�z0/2�rH

�

�− 1�k 1

k3/2 exp��ki
aH

2

�F
2 +

iz0
2

4�kaH
2 � ,

�A8�

where �x is the integer part of the number x.
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