3,812 research outputs found

    Accurate computed spin-state energetics for Co(iii) complexes:implications for modelling homogeneous catalysis

    Get PDF
    Co(III) complexes are increasingly prevalent in homogeneous catalysis. Catalytic cycles involve multiple intermediates, many of which will feature unsaturated metal centres. This raises the possibility of multistate character along reaction pathways and so requires an accurate approach to calculating spin-state energetics. Here we report an assessment of the performance of DLPNO-CCSD(T) (domain-based local pair natural orbital approximation to coupled cluster theory) against experimental Co-1 to Co-3 spin splitting energies for a series of pseudo-octahedral Co(III) complexes. The alternative NEVPT2 (strongly-contracted n-electron valence perturbation theory) and a range of density functionals are also assessed. DLPNO-CCSD(T) is identified as a highly promising method, with mean absolute deviations (MADs) as small as 1.3 kcal mol(-1) when Kohn-Sham reference orbitals are used. DLPNO-CCSD(T) out-performs NEVPT2 for which a MAD of 3.5 kcal mol(-)(1 )can be achieved when a (10,12) active space is employed. Of the nine DFT methods investigated TPSS is the leading functional, with a MAD of 1.9 kcal mol(-1). Our results show how DLPNO-CCSD(T) can provide accurate spin state energetics for Co(III) species in particular and first row transition metal systems in general. DLPNO-CCSD(T) is therefore a promising method for applications in the burgeoning field of homogeneous catalysis based on Co(III) species

    Virtualness and knowledge in teams: Managing the love triangle of organizations, individuals, and information technology

    Get PDF
    Information technology can facilitate the dissemination of knowledge across the organization- even to the point of making virtual teams a viable alternative to face-to-face work. However, unless managed, the combination of information technology and virtual work may serve to change the distribution of different types of knowledge across individuals, teams, and the organization. Implications include the possibility that information technology plays the role of a jealous mistress when it comes to the development and ownership of valuable knowledge in organizations; that is. information technology may destabilize the relationship between organizations and their employees when it comes to the transfer of knowledge. The paper advances theory and informs practice by illustrating the dynamics of knowledge development and transfer in more and less virtual teams

    Events, processes, and the time of a killing

    Get PDF
    The paper proposes a novel solution to the problem of the time of a killing (ToK), which persistently besets theories of act-individuation. The solution proposed claims to expose a crucial wrong-headed assumption in the debate, according to which ToK is essentially a problem of locating some event that corresponds to the killing. The alternative proposal put forward here turns on recognizing a separate category of dynamic occurents, viz. processes. The paper does not aim to mount a comprehensive defense of process ontology, relying instead on extant defenses. The primary aim is rather to put process ontology to work in diagnosing the current state of play over ToK, and indeed in solving it

    Effects of drought on groundwater-fed lake areas in the Nebraska Sand Hills

    Get PDF
    Study region: The Nebraska Sand Hills (NSH) lies in the western part of Nebraska, United States. We chose the north-eastern, central, and western parts of NSH with distinct climate, topography, and hydrology. Study focus: The study assesses the response of hundreds of shallow groundwater-fed lakes to drought. Total lake area (TLA), determined by classifying Landsat satellite images from 1984 to 2018, was juxtaposed with published Palmer Drought Severity Index (PDSI) and detrended cumulative PDSI (DeCumPDSI) at monthly and annual timescales. The PDSI and DeCumPDSI were time lagged to incorporate the preceding climatic effect (groundwater time lag) and evaluated against TLA using Bayesian regression analysis. New hydrologic insight for the region: TLA in the NSH respond to the seasonal as well as long-term climatic effects moderated by topography, surface, and subsurface hydrology. A higher determination coefficient R2 and lower mean square error of TLA at annual PDSI and DeCumPDSI illustrate the effect of long-term climatic fluctuations and groundwater influence: the evaporative losses from lakes are modulated by the lake-groundwater exchange, but the groundwater recharge has a longer response time to the drought. The study provides a simple method of assessment of the climate impact that results from the satellite data, gridded climate observation, and statistics for sensitive landscape of the NSH

    Phosphirenium Ions as Masked Phosphenium Catalysts:Mechanistic Evaluation and Application in Synthesis

    Get PDF
    The utilization of phosphirenium ions is presented; optimized and broadened three-membered ring construction is described together with the use of these ions as efficient pre-catalysts for metal-free carbonyl reduction with silanes. Full characterization of the phosphirenium ions is presented, and initial experimental and computational mechanistic studies indicate that these act as a "masked phosphenium"source that is accessed via ring opening. Catalysis proceeds via associative transfer of {Ph2P+} to a carbonyl nucleophile, Hâ'SiR3 bond addition over the C=O group, and associative displacement of the product by a further equivalent of the carbonyl substrate, which completes the catalytic cycle. A competing off-cycle process leading to vinyl phosphine formation is detailed for the hydrosilylation of benzophenone for which an inverse order in [silane] is observed. Experimentally, the formation of side products, including off-cycle vinyl phosphine, is favored by electrondonating substituents on the phosphirenium cation, while catalytic hydrosilylation is promoted by electron-withdrawing substituents. These observations are rationalized in parallel computational studies.</p

    Phosphirenium ions as masked phosphenium catalysts : mechanistic evaluation and application in synthesis

    Get PDF
    The EPSRC is thanked for funding. S.E.N. thanks Heriot Watt University for the award of a James Watt scholarship.The utilization of phosphirenium ions is presented; optimized and broadened three-membered ring construction is described together with the use of these ions as efficient pre-catalysts for metal-free carbonyl reduction with silanes. Full characterization of the phosphirenium ions is presented, and initial experimental and computational mechanistic studies indicate that these act as a "masked phosphenium"source that is accessed via ring opening. Catalysis proceeds via associative transfer of {Ph2P+} to a carbonyl nucleophile, Hâ'SiR3 bond addition over the C=O group, and associative displacement of the product by a further equivalent of the carbonyl substrate, which completes the catalytic cycle. A competing off-cycle process leading to vinyl phosphine formation is detailed for the hydrosilylation of benzophenone for which an inverse order in [silane] is observed. Experimentally, the formation of side products, including off-cycle vinyl phosphine, is favored by electrondonating substituents on the phosphirenium cation, while catalytic hydrosilylation is promoted by electron-withdrawing substituents. These observations are rationalized in parallel computational studies.Peer reviewe

    Tuning the polarization states of optical spots at the nanoscale on the poincar´e sphere using a plasmonic nanoantenna

    Get PDF
    It is shown that the polarization states of optical spots at the nanoscale can be manipulated to various points on the Poincar´e sphere using a plasmonic nanoantenna. Linearly, circularly, and elliptically polarized near-field optical spots at the nanoscale are achieved with various polarization states on the Poincar´e sphere using a plasmonic nanoantenna. A novel plasmonic nanoantenna is illuminated with diffraction-limited linearly polarized light. It is demonstrated that the plasmonic resonances of perpendicular and longitudinal components of the nanoantenna and the angle of incident polarization can be tuned to obtain optical spots beyond the diffraction limit with a desired polarization and handedness

    Understanding the evolution of native pinewoods in Scotland will benefit their future management and conservation

    Get PDF
    Scots pine (Pinus sylvestris L.) is a foundation species in Scottish highland forests and a national icon. Due to heavy exploitation, the current native pinewood coverage represents a small fraction of the postglacial maximum. To reverse this decline, various schemes have been initiated to promote planting of new and expansion of old pinewoods. This includes the designation of seed zones for control of the remaining genetic resources. The zoning was based mainly on biochemical similarity among pinewoods but, by definition, neutral molecular markers do not reflect local phenotypic adaptation. Environmental variation within Scotland is substantial and it is not yet clear to what extent this has shaped patterns of adaptive differentiation among Scottish populations. Systematic, rangewide common-environment trials can provide insights into the evolution of the native pinewoods, indicating how environment has influenced phenotypic variation and how variation is maintained. Careful design of such experiments can also provide data on the history and connectivity among populations, by molecular marker analysis. Together, phenotypic and molecular datasets from such trials can provide a robust basis for refining seed transfer guidelines for Scots pine in Scotland and should form the scientific basis for conservation action on this nationally important habitat
    corecore