5,669 research outputs found
Calf feeding and management cow and calf management
"January, 1938, Reprinted, March 1940.""Prepared by T. A. Ewing, Extension Animal Husbandman, in collaboration with E. T. Itschner, State Club Agent."Appended to end, "Record blank for members in 4-H livestock clubs.
Investigation of prediction methods for the loads and stresses of Apollo type spacecraft parachutes. Volume 1: Loads
An analysis was conducted with the objective of upgrading and improving the loads, stress, and performance prediction methods for Apollo spacecraft parachutes. The subjects considered were: (1) methods for a new theoretical approach to the parachute opening process, (2) new experimental-analytical techniques to improve the measurement of pressures, stresses, and strains in inflight parachutes, and (3) a numerical method for analyzing the dynamical behavior of rapidly loaded pilot chute risers
Sheep production : ewe and lamb management
Cooperative Extension Work in Agriculture and Home Economics, University of Missouri, College of Agriculture and the United States Department of Agriculture cooperating."December, 1937."Title from cover
Calf feeding and management cow and calf management
"January, 1938.""Prepared by T. A. Ewing, Extension Animal' Husbandman , in collaboration with E. T. Itschner, State Club Agent."Appended to end, "Record blank for members in 4-H livestock clubs."Cooperative Extension Work in Agriculture and Home Economics, University of Missouri, College of Agriculture and the United States Department of Agriculture cooperating.Title from cover
Recommended from our members
Continuity and Internal Properties of Gulf Coast Sandstones and their Implications for Geopressured Energy Development
The continuity of sandstone reservoirs is controlled by various factors including structural trend, sand-body geometry, and the distribution of framework grains, matrix, and interstices within the sand body. Except for the limits imposed by faults, these factors are largely inherited from the depositional environment and modified during sandstone compaction and cementation. Regional and local continuity of sandstone reservoirs depends on a depositional and structural hierarchy of four levels: (1) genetically related sandstones commonly associated with a single depositional system, (2) areally extensive fault blocks, (3) individual sandstones within a fault block, and (4) isolated reservoirs within a fault-bounded sandstone.
Compilation of published and unpublished data for Tertiary and late Quaternary Gulf Coast sandstones of fluvial, deltaic, barrier-strandplain, and submarine fan origins suggests that volumes of sand systems (first hierarchical level) range from 10^11 to 10^13 ft^3, whereas volumes of individual sand bodies range from 10^9 to 10^11 ft^3. The continuity and productive limits of the ancient sandstones are substantially reduced by faults and internal heterogeneity that further subdivide the sand body into individual compartments.
For the Wilcox and Frio trends of Texas, fault blocks (second hierarchical level) vary greatly in size, most being between 0.3 and 52 mi^2 in area; however, the distribution is strongly skewed toward small areas. Volumes of individual reservoirs (fourth hierarchical level) determined from engineering production data are 50 percent less to 200 percent more than estimates obtained from geologic mapping. In general, mapped volumes underestimate actual volumes where faults are non-sealing and overestimate actual volumes where laterally continuous shale breaks cause reductions in porosity and permeability.Bureau of Economic Geolog
Using XRD to Characterize Sediment Sorting in a Mars Analog Glacio-Fluvio-Eolian Basaltic Sedimentary System in Iceland
The martian surface has a primarily basaltic composition and is dominated by sedimentary deposits. Ancient layered sedimentary rocks have been identified across the planet from orbit, have been studied in situ by the Mars Exploration Rovers and the Mars Science Laboratory rover, and will be studied by the Mars 2020 rover. These ancient sedimentary rocks were deposited in fluvial, lacustrine, and eolian environments during a warmer and wetter era on Mars. It is important to study the composition of sediments in Mars analog environments to characterize how minerals in basaltic sedimentary systems are sorted and/or aqueously altered. This information can help us better interpret sedimentary processes from similar deposits on Mars and derive information about the igneous source rocks. Sediment sorting has been studied extensively on Earth, but not typically in basaltic environments. Previous work has addressed sorting of basaltic sediments through experimental techniques and in modern eolian basaltic systems and aqueous alteration in subglacial and proglacial environments. We add to this body of research by studying sediment sorting and aqueous alteration in a glacio-fluvio-eolian basaltic system in southwest Iceland
Primary care provider’s use of motivational interviewing to support youth nutrition and physical activity behavior change.
Presented at: International Society of Behavioral Nutrition and Physical Activity; June 8-11, 2016; Cape Town, South Africa.https://digitalrepository.unm.edu/prc-posters-presentations/1034/thumbnail.jp
Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence
Permafrost soils store over half of global soil carbon (C), and northern frozen peatlands store about 10% of global permafrost C. With thaw, inundation of high latitude lowland peatlands typically increases the surface-atmosphere flux of methane (CH4), a potent greenhouse gas. To examine the effects of lowland permafrost thaw over millennial timescales, we measured carbon dioxide (CO2) and CH4 exchange along sites that constitute a ~1000 yr thaw chronosequence of thermokarst collapse bogs and adjacent fen locations at Innoko Flats Wildlife Refuge in western Alaska. Peak CH4 exchange in July (123 ± 71 mg CH4–C m−2 d−1) was observed in features that have been thawed for 30 to 70 (\u3c100) yr, where soils were warmer than at more recently thawed sites (14 to 21 yr; emitting 1.37 ± 0.67 mg CH4–C m−2 d−1 in July) and had shallower water tables than at older sites (200 to 1400 yr; emitting 6.55 ± 2.23 mg CH4–C m−2 d−1 in July). Carbon lost via CH4 efflux during the growing season at these intermediate age sites was 8% of uptake by net ecosystem exchange. Our results provide evidence that CH4 emissions following lowland permafrost thaw are enhanced over decadal time scales, but limited over millennia. Over larger spatial scales, adjacent fen systems may contribute sustained CH4 emission, CO2 uptake, and DOC export. We argue that over timescales of decades to centuries, thaw features in high-latitude lowland peatlands, particularly those developed on poorly drained mineral substrates, are a key locus of elevated CH4 emission to the atmosphere that must be considered for a complete understanding of high latitude CH4 dynamics
- …