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Introduction:  The martian surface has a primarily 

basaltic composition and is dominated by sedimentary 

deposits [e.g., 1-2]. Ancient layered sedimentary rocks 

have been identified across the planet from orbit [e.g., 

2], have been studied in situ by the Mars Exploration 

Rovers and the Mars Science Laboratory rover [e.g., 3-

4], and will be studied by the Mars 2020 rover [e.g., 5]. 

These ancient sedimentary rocks were deposited in flu-

vial, lacustrine, and eolian environments during a 

warmer and wetter era on Mars [e.g., 3-5].  

It is important to study the composition of sediments 

in Mars analog environments to characterize how min-

erals in basaltic sedimentary systems are sorted and/or 

aqueously altered. This information can help us better 

interpret sedimentary processes from similar deposits 

on Mars and derive information about the igneous 

source rocks. Sediment sorting has been studied exten-

sively on Earth [e.g., 6], but not typically in basaltic en-

vironments. Previous work has addressed sorting of ba-

saltic sediments through experimental techniques [7] 

and in modern eolian basaltic systems [e.g., 8] and aque-

ous alteration in subglacial and proglacial environments 

[e.g., 9-10]. We add to this body of research by studying 

sediment sorting and aqueous alteration in a glacio-flu-

vio-eolian basaltic system in southwest Iceland. 

Field site:  Compositional and physical characteris-

tics of sediments deposited in the fluvio-eolian system 

fed by the Þórisjokull glacier were studied in situ as part 

of the SAND-E: Semi-Autonomous Navigation for De-

trital Environments project. One of the science objec-

tives of the project is to examine and determine the 

causes of variability in the geochemistry and mineral-

ogy of fluvial and eolian sediments along a sediment 

transport pathway. To address this goal, sediments were 

analyzed by handheld X-ray fluorescence (XRF) and 

visible/near-infrared (VNIR) spectroscopies and high-

resolution imaging at three sites proximal, medial, and 

distal to the glacier. Surface sediment samples that cor-

responded to XRF and VNIR measurements were col-

lected and returned for detailed mineralogical and geo-

chemical analysis. Here, we provide a preliminary as-

sessment of the mineralogy of surface sediment samples 

as determined by X-ray diffraction (XRD). 

Samples and X-Ray Diffraction:  Of the ~200 

samples collected in the field, 26 were analyzed for 

quantitative XRD. Samples presented here represent the 

assortment of samples collected in the field, including 

fluvial and eolian sediments with a range of grain sizes 

collected at sites proximal (6.3 km), medial (11.3 km), 

and distal (14.4 km) from the glacial source (see [11-13] 

for information about grain size and geochemistry of the 

sediments). Fluvial sediments include dark sand-domi-

nated samples collected from active or recently active 

channels that were transported as bed and suspended 

load and bright silt-dominated deposits that represent 

finer materials transported in the wash load of the pro-

glacial streams (Fig.1). Some eolian sediments were 

collected in pairs, one sample from a ripple trough and 

one from an adjacent ripple crest. We report results from 

three such pairs here. 

Sediments were pulverized in ethanol using a Retsch 

Zr mill. Micronized sediments were spiked with 20 

wt.% Al2O3 as an internal standard then measured at the 

NASA Johnson Space Center on a Rigaku MiniFlex 6G 

from 5-70 °2θ with a Co source. Mineral and amorphous 

abundances were determined by Rietveld refinement us-

ing the Materials Data Inc. Jade software. 

 
Figure 1. Performing in situ XRF measurements on silt 

(light-toned material) and sand (dark-toned material) in 

a recently active channel at the proximal site. 

Results:  All surface sediment samples comprise 

variable amounts of plagioclase feldspar, clinopyroxene 

(augite), and olivine (Fig. 2). Trace amounts (<1 wt.%) 

of hematite are present in every sample, and trace 
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amounts of ilmenite were identified in some samples. 

X-ray amorphous abundances range from 0-20 wt.%. 

These mineralogical results are consistent with the iden-

tification of plagioclase-phyric and olivine-phyric bas-

alt source rocks [13]. There is no evidence for phyllosil-

icates in the bulk powder. See [14] for discussion of 

aqueous alteration products in the <2 m size fraction. 

XRD results demonstrate separation between plagi-

oclase and mafic minerals (i.e., pyroxene and olivine) 

within this basaltic sedimentary system. To visualize 

these separations, we plot plagioclase/pyroxene ratios in 

Fig. 3. Trends are similar for plagioclase/mafic mineral 

ratios (data not shown). Fluvial silt samples are gener-

ally relatively more enriched in plagioclase than mafic 

minerals compared to the fluvial sand samples. Fluvial 

sand samples from the distal site have lower plagio-

clase/pyroxene ratios than fluvial sand samples from the 

proximal and medial sites, indicating that distal fluvial 

sand samples are relatively more enriched in mafic min-

erals than other sites closer to the glacier. This result is 

corroborated by XRF measurements that show an en-

richment in MgO and TiO2 downstream [13]. Eolian 

sediments show low variability in mineral ratios com-

pared to fluvial samples, and ripple crest samples appear 

to be more enriched in pyroxene than ripple troughs. 

Discussion: The low abundance of amorphous ma-

terials in all samples suggests that subaerial lavas, rather 

than subglacial volcanic deposits, are the main source of 

the sediments. The dominance of minerals over amor-

phous materials is uncommon in Icelandic sand sheets 

[e.g., 15] and demonstrates that this field site is useful 

for understanding mineral sorting along a Mars analog 

fluvial-eolian sediment transport pathway. 

Mineral variability within this glacio-fluvio-eolian 

basaltic sedimentary system indicates hydrodynamic 

sorting is affecting sediment composition. The enrich-

ment in plagioclase relative to mafic minerals in the flu-

vial silt samples demonstrates that the wash load prefer-

entially carries plagioclase, either because it is concen-

trated in the finest fraction or because it is less dense 

than mafic minerals. The relatively low plagioclase/py-

roxene ratios of the fluvial sands at the distal site sug-

gest that mafic minerals become concentrated down-

stream, either through hydrodynamic sorting or because 

of a mafic mineral-rich local source. The lavas of the 

Skjaldbreiður volcano at the distal site are plagioclase-

phyric [13], suggesting hydrodynamic sorting of fine-

grained mafic minerals in the bed load is responsible for 

the enrichment in mafic minerals downstream. Similar 

results have been recognized in fluvio-lacustrine depos-

its in Gale crater, Mars [16]. The low variability in min-

eral ratios in the eolian sediments may indicate that eo-

lian processes homogenize local fluvial sediments. 

 
Figure 2. Plagioclase (gray), pyroxene (blue), olivine 

(green), and amorphous (yellow) abundances for fluvial 

sand, fluvial silt, and eolian samples.  

 
Figure 3. Plagioclase/pyroxene ratios of fluvial sand, 

fluvial silt, and eolian sand samples from the proximal, 

medial, and distal sites. 
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