60 research outputs found
Vortex oscillations induced by a spin-polarized current in a magnetic nanopillar: Evidence for a failure of the Thiele approach
We investigate the vortex excitations induced by a spin-polarized current in
a magnetic nanopillar by means of micromagnetic simulations and analytical
calculations. Damped motion, stationary vortex rotation and the switching of
the vortex core are successively observed for increasing values of the current.
We demonstrate that even for small amplitude of the vortex motion, the
analytical description based the classical Thiele approach can yield
quantitatively and qualitatively unsound results. We suggest and validate a new
analytical technique based on the calculation of the energy dissipation
Temporal intensity correlation of light scattered by a hot atomic vapor
We present temporal intensity correlation measurements of light scattered by
a hot atomic vapor. Clear evidence of photon bunching is shown at very short
time-scales (nanoseconds) imposed by the Doppler broadening of the hot vapor.
Moreover, we demonstrate that relevant information about the scattering
process, such as the ratio of single to multiple scattering, can be deduced
from the measured intensity correlation function. These measurements confirm
the interest of temporal intensity correlation to access non-trivial spectral
features, with potential applications in astrophysics
Parallel pumping of magnetic vortex gyrations in spin-torque nano-oscillators
We experimentally demonstrate that large magnetic vortex oscillations can be
parametrically excited in a magnetic tunnel junction by the injection of
radio-frequency (rf) currents at twice the natural frequency of the gyrotropic
vortex core motion. The mechanism of excitation is based on the parallel
pumping of vortex motion by the rf orthoradial field generated by the injected
current. Theoretical analysis shows that experimental results can be
interpreted as the manifestation of parametric amplification when rf current is
small, and of parametric instability when rf current is above a certain
threshold. By taking into account the energy nonlinearities, we succeed to
describe the amplitude saturation of vortex oscillations as well as the
coexistence of stable regimes.Comment: Submitted to Phys. Rev. Let
Large microwave generation from d.c. driven magnetic vortex oscillators in magnetic tunnel junctions
Spin polarized current can excite the magnetization of a ferromagnet through
the transfer of spin angular momentum to the local spin system. This pure
spin-related transport phenomena leads to alluring possibilities for the
achievement of a nanometer scale, CMOS compatible and tunable microwave
generator operating at low bias for future wireless communications. Microwave
emission generated by the persitent motion of magnetic vortices induced by spin
transfer effect seems to be a unique manner to reach appropriate spectral
linewidth. However, in metallic systems, where such vortex oscillations have
been observed, the resulting microwave power is much too small. Here we present
experimental evidences of spin-transfer induced core vortex precessions in
MgO-based magnetic tunnel junctions with similar good spectral quality but an
emitted power at least one order of magnitude stronger. More importantly,
unlike to others spin transfer excitations, the thorough comparison between
experimental results and models provide a clear textbook illustration of the
mechanisms of vortex precessions induced by spin transfer
Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe
Chiral magnetic interactions induce complex spin textures including helical
and conical spin waves, as well as particle-like objects such as magnetic
skyrmions and merons. These spin textures are the basis for innovative device
paradigms and give rise to exotic topological phenomena, thus being of interest
for both applied and fundamental sciences. Present key questions address the
dynamics of the spin system and emergent topological defects. Here we analyze
the micromagnetic dynamics in the helimagnetic phase of FeGe. By combining
magnetic force microscopy, single-spin magnetometry, and
Landau-Lifschitz-Gilbert simulations we show that the nanoscale dynamics are
governed by the depinning and subsequent motion of magnetic edge dislocations.
The motion of these topologically stable objects triggers perturbations that
can propagate over mesoscopic length scales. The observation of stochastic
instabilities in the micromagnetic structure provides new insight to the
spatio-temporal dynamics of itinerant helimagnets and topological defects, and
discloses novel challenges regarding their technological usage
Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme
Spin-polarised radio-frequency currents, whose frequency is equal to that of
the gyrotropic mode, will cause an excitation of the core of a magnetic vortex
confined in a magnetic tunnel junction. When the excitation radius of the
vortex core is greater than that of the junction radius, vortex core expulsion
is observed, leading to a large change in resistance, as the layer enters a
predominantly uniform magnetisation state. Unlike the conventional spin-torque
diode effect, this highly tunable resonant effect will generate a voltage which
does not decrease as a function of rf power, and has the potential to form the
basis of a new generation of tunable nanoscale radio-frequency detectors
Investigation of Surface Magnetic Noise by Shallow Spins in Diamond
We present measurements of spin relaxation times (T1, T1ρ, T2) on very shallow (≲5 nm) nitrogen-vacancy centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30 times compared to bulk values, indicating the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01–0.1μB/nm2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples and chemical surface terminations. A low temperature measurement further confirms that fluctuations are thermally activated. The data support the atomistic picture where impurities are associated with the top carbon layers, and not with terminating surface atoms or adsorbate molecules. The low spin density implies that the presence of A single surface impurity is sufficient to cause spin relaxation of a shallow nitrogen-vacancy center
Investigation of Surface Magnetic Noise by Shallow Spins in Diamond
We present measurements of spin relaxation times (T1, T1ρ, T2) on very shallow (≲5 nm) nitrogen-vacancy centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30 times compared to bulk values, indicating the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01–0.1μB/nm2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples and chemical surface terminations. A low temperature measurement further confirms that fluctuations are thermally activated. The data support the atomistic picture where impurities are associated with the top carbon layers, and not with terminating surface atoms or adsorbate molecules. The low spin density implies that the presence of A single surface impurity is sufficient to cause spin relaxation of a shallow nitrogen-vacancy center
- …