60 research outputs found

    Vortex oscillations induced by a spin-polarized current in a magnetic nanopillar: Evidence for a failure of the Thiele approach

    Full text link
    We investigate the vortex excitations induced by a spin-polarized current in a magnetic nanopillar by means of micromagnetic simulations and analytical calculations. Damped motion, stationary vortex rotation and the switching of the vortex core are successively observed for increasing values of the current. We demonstrate that even for small amplitude of the vortex motion, the analytical description based the classical Thiele approach can yield quantitatively and qualitatively unsound results. We suggest and validate a new analytical technique based on the calculation of the energy dissipation

    Temporal intensity correlation of light scattered by a hot atomic vapor

    Get PDF
    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (nanoseconds) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation to access non-trivial spectral features, with potential applications in astrophysics

    Parallel pumping of magnetic vortex gyrations in spin-torque nano-oscillators

    Full text link
    We experimentally demonstrate that large magnetic vortex oscillations can be parametrically excited in a magnetic tunnel junction by the injection of radio-frequency (rf) currents at twice the natural frequency of the gyrotropic vortex core motion. The mechanism of excitation is based on the parallel pumping of vortex motion by the rf orthoradial field generated by the injected current. Theoretical analysis shows that experimental results can be interpreted as the manifestation of parametric amplification when rf current is small, and of parametric instability when rf current is above a certain threshold. By taking into account the energy nonlinearities, we succeed to describe the amplitude saturation of vortex oscillations as well as the coexistence of stable regimes.Comment: Submitted to Phys. Rev. Let

    Large microwave generation from d.c. driven magnetic vortex oscillators in magnetic tunnel junctions

    Get PDF
    Spin polarized current can excite the magnetization of a ferromagnet through the transfer of spin angular momentum to the local spin system. This pure spin-related transport phenomena leads to alluring possibilities for the achievement of a nanometer scale, CMOS compatible and tunable microwave generator operating at low bias for future wireless communications. Microwave emission generated by the persitent motion of magnetic vortices induced by spin transfer effect seems to be a unique manner to reach appropriate spectral linewidth. However, in metallic systems, where such vortex oscillations have been observed, the resulting microwave power is much too small. Here we present experimental evidences of spin-transfer induced core vortex precessions in MgO-based magnetic tunnel junctions with similar good spectral quality but an emitted power at least one order of magnitude stronger. More importantly, unlike to others spin transfer excitations, the thorough comparison between experimental results and models provide a clear textbook illustration of the mechanisms of vortex precessions induced by spin transfer

    Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe

    Full text link
    Chiral magnetic interactions induce complex spin textures including helical and conical spin waves, as well as particle-like objects such as magnetic skyrmions and merons. These spin textures are the basis for innovative device paradigms and give rise to exotic topological phenomena, thus being of interest for both applied and fundamental sciences. Present key questions address the dynamics of the spin system and emergent topological defects. Here we analyze the micromagnetic dynamics in the helimagnetic phase of FeGe. By combining magnetic force microscopy, single-spin magnetometry, and Landau-Lifschitz-Gilbert simulations we show that the nanoscale dynamics are governed by the depinning and subsequent motion of magnetic edge dislocations. The motion of these topologically stable objects triggers perturbations that can propagate over mesoscopic length scales. The observation of stochastic instabilities in the micromagnetic structure provides new insight to the spatio-temporal dynamics of itinerant helimagnets and topological defects, and discloses novel challenges regarding their technological usage

    Spin torque resonant vortex core expulsion for an efficient radio-frequency detection scheme

    Full text link
    Spin-polarised radio-frequency currents, whose frequency is equal to that of the gyrotropic mode, will cause an excitation of the core of a magnetic vortex confined in a magnetic tunnel junction. When the excitation radius of the vortex core is greater than that of the junction radius, vortex core expulsion is observed, leading to a large change in resistance, as the layer enters a predominantly uniform magnetisation state. Unlike the conventional spin-torque diode effect, this highly tunable resonant effect will generate a voltage which does not decrease as a function of rf power, and has the potential to form the basis of a new generation of tunable nanoscale radio-frequency detectors

    Investigation of Surface Magnetic Noise by Shallow Spins in Diamond

    Get PDF
    We present measurements of spin relaxation times (T1, T1ρ, T2) on very shallow (≲5  nm) nitrogen-vacancy centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30 times compared to bulk values, indicating the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01–0.1μB/nm2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples and chemical surface terminations. A low temperature measurement further confirms that fluctuations are thermally activated. The data support the atomistic picture where impurities are associated with the top carbon layers, and not with terminating surface atoms or adsorbate molecules. The low spin density implies that the presence of A single surface impurity is sufficient to cause spin relaxation of a shallow nitrogen-vacancy center

    Investigation of Surface Magnetic Noise by Shallow Spins in Diamond

    Get PDF
    We present measurements of spin relaxation times (T1, T1ρ, T2) on very shallow (≲5  nm) nitrogen-vacancy centers in high-purity diamond single crystals. We find a reduction of spin relaxation times up to 30 times compared to bulk values, indicating the presence of ubiquitous magnetic impurities associated with the surface. Our measurements yield a density of 0.01–0.1μB/nm2 and a characteristic correlation time of 0.28(3) ns of surface states, with little variation between samples and chemical surface terminations. A low temperature measurement further confirms that fluctuations are thermally activated. The data support the atomistic picture where impurities are associated with the top carbon layers, and not with terminating surface atoms or adsorbate molecules. The low spin density implies that the presence of A single surface impurity is sufficient to cause spin relaxation of a shallow nitrogen-vacancy center
    corecore