9 research outputs found

    Induction of Cerebral Arteriogenesis in Mice

    No full text

    Granulocyte colony-stimulating factor improves cerebrovascular reserve capacity by enhancing collateral growth in the circle of Willis

    No full text
    BACKGROUND AND PURPOSE: Restoration of cerebrovascular reserve capacity (CVRC) depends on the recruitment and positive outward remodeling of preexistent collaterals (arteriogenesis). With this study, we provide functional evidence that granulocyte colony-stimulating factor (G-CSF) augments therapeutic arteriogenesis in two animal models of cerebral hypoperfusion. We identified an effective dosing regimen that improved CVRC and stimulated collateral growth, thereby improving the outcome after experimentally induced stroke. METHODS: We used two established animal models of (a) cerebral hypoperfusion (mouse, common carotid artery ligation) and (b) cerebral arteriogenesis (rat, 3-vessel occlusion). Following therapeutic dose determination, both models received either G-CSF, 40 mug/kg every other day, or vehicle for 1 week. Collateral vessel diameters were measured following latex angiography. Cerebrovascular reserve capacities were assessed after acetazolamide stimulation. Mice with left common carotid artery occlusion (CCAO) were additionally subjected to middle cerebral artery occlusion, and stroke volumes were assessed after triphenyltetrazolium chloride staining. Given the vital role of monocytes in arteriogenesis, we assessed (a) the influence of G-CSF on monocyte migration in vitro and (b) monocyte counts in the adventitial tissues of the growing collaterals in vivo. RESULTS: CVRC was impaired in both animal models 1 week after induction of hypoperfusion. While G-CSF, 40 mug/kg every other day, significantly augmented cerebral arteriogenesis in the rat model, 50 or 150 mug/kg every day did not show any noticeable therapeutic impact. G-CSF restored CVRC in mice (5 +/- 2 to 12 +/- 6%) and rats (3 +/- 4 to 19 +/- 12%). Vessel diameters changed accordingly: in rats, the diameters of posterior cerebral arteries (ipsilateral: 209 +/- 7-271 +/- 57 mum; contralateral: 208 +/- 11-252 +/- 28 mum) and in mice the diameter of anterior cerebral arteries (185 +/- 15-222 +/- 12 mum) significantly increased in the G-CSF groups compared to controls. Stroke volume in mice (10 +/- 2%) was diminished following CCAO (7 +/- 4%) and G-CSF treatment (4 +/- 2%). G-CSF significantly increased monocyte migration in vitro and perivascular monocyte numbers in vivo. CONCLUSION: G-CSF augments cerebral collateral artery growth, increases CVRC and protects from experimentally induced ischemic stroke. When comparing three different dosing regimens, a relatively low dosage of G-CSF was most effective, indicating that the common side effects of this cytokine might be significantly reduced or possibly even avoided in this indication

    Erratum: Granulocyte Colony-Stimulating Factor Improves Cerebrovascular Reserve Capacity by Enhancing Collateral Growth in the Circle of Willis

    No full text
    <i>Background and Purpose:</i> Restoration of cerebrovascular reserve capacity (CVRC) depends on the recruitment and positive outward remodeling of preexistent collaterals (arteriogenesis). With this study, we provide functional evidence that granulocyte colony-stimulating factor (G-CSF) augments therapeutic arteriogenesis in two animal models of cerebral hypoperfusion. We identified an effective dosing regimen that improved CVRC and stimulated collateral growth, thereby improving the outcome after experimentally induced stroke. <i>Methods:</i> We used two established animal models of (a) cerebral hypoperfusion (mouse, common carotid artery ligation) and (b) cerebral arteriogenesis (rat, 3-vessel occlusion). Following therapeutic dose determination, both models received either G-CSF, 40 µg/kg every other day, or vehicle for 1 week. Collateral vessel diameters were measured following latex angiography. Cerebrovascular reserve capacities were assessed after acetazolamide stimulation. Mice with left common carotid artery occlusion (CCAO) were additionally subjected to middle cerebral artery occlusion, and stroke volumes were assessed after triphenyltetrazolium chloride staining. Given the vital role of monocytes in arteriogenesis, we assessed (a) the influence of G-CSF on monocyte migration in vitro and (b) monocyte counts in the adventitial tissues of the growing collaterals in vivo. <i>Results:</i> CVRC was impaired in both animal models 1 week after induction of hypoperfusion. While G-CSF, 40 µg/kg every other day, significantly augmented cerebral arteriogenesis in the rat model, 50 or 150 µg/kg every day did not show any noticeable therapeutic impact. G-CSF restored CVRC in mice (5 ± 2 to 12 ± 6%) and rats (3 ± 4 to 19 ± 12%). Vessel diameters changed accordingly: in rats, the diameters of posterior cerebral arteries (ipsilateral: 209 ± 7–271 ± 57 µm; contralateral: 208 ± 11–252 ± 28 µm) and in mice the diameter of anterior cerebral arteries (185 ± 15–222 ± 12 µm) significantly increased in the G-CSF groups compared to controls. Stroke volume in mice (10 ± 2%) was diminished following CCAO (7 ± 4%) and G-CSF treatment (4 ± 2%). G-CSF significantly increased monocyte migration in vitro and perivascular monocyte numbers in vivo. <i>Conclusion:</i> G-CSF augments cerebral collateral artery growth, increases CVRC and protects from experimentally induced ischemic stroke. When comparing three different dosing regimens, a relatively low dosage of G-CSF was most effective, indicating that the common side effects of this cytokine might be significantly reduced or possibly even avoided in this indication

    Arteriogenesis is modulated on bradykinin receptor signaling

    No full text
    Background: Positive outward remodeling of preexisting collateral arteries into functional conductance arteries, arteriogenesis, is a major endogenous rescue mechanism to prevent for cardiovascular ischemia. Collateral arterial growth is accompanied by kininogen expression in growing arteries, the precursor of kinins, which signal via the kinin receptors 1 (B1R) and kinin receptor 2 (B2R). The purpose of this study was to elucidate the functional role and mechanism of bradykinin receptor signaling in arteriogenesis. Methods and Results: Bradykinin receptors positively affected arteriogenesis, with the contribution of B1R being more pronounced than B2R. In mice, arteriogenesis on femoral artery occlusion was significantly reduced in B1R mutant mice as evidenced by reduced microspheres and laser Doppler flow perfusion measurements. Transplantation of wild-type bone marrow cells into irradiated B1R mutant mice restored arteriogenesis, whereas bone marrow chimeric mice generated by reconstituting wild-type mice with B1R mutant bone marrow showed reduced arteriogenesis after femoral artery occlusion. In the rat brain 3-vessel occlusion arteriogenesis model, pharmacological treatment of B1R inhibited arteriogenesis and stimulation of B1R enhanced arteriogenesis. In the rat, femoral artery ligation combined with arterial venous shunt model resulted in flow-driven arteriogenesis, and treatment with B1R antagonist R715 decreased vascular remodeling and leukocyte invasion (monocytes) into the perivascular tissue. In monocyte migration assays, in vitro B1R agonists enhanced migration of monocytes. Conclusions: Kinin receptors act as positive modulators of arteriogenesis in mice and rats. B1R can be blocked or therapeutically stimulated by B1R antagonists or agonists, respectively, involving a contribution of peripheral immune cells (monocytes) linking hemodynamic conditions with inflammatory pathways

    Chest pain due to coronary artery disease alters stress neuropeptide levels: Potential implications for clinical assessment

    No full text
    corecore