83 research outputs found
Specific Binding of the Pathogenic Prion Isoform: Development and Characterization of a Humanized Single-Chain Variable Antibody Fragment
Murine monoclonal antibody V5B2 which specifically recognizes the pathogenic form of the prion protein represents a potentially valuable tool in diagnostics or therapy of prion diseases. As murine antibodies elicit immune response in human, only modified forms can be used for therapeutic applications. We humanized a single-chain V5B2 antibody using variable domain resurfacing approach guided by computer modelling. Design based on sequence alignments and computer modelling resulted in a humanized version bearing 13 mutations compared to initial murine scFv. The humanized scFv was expressed in a dedicated bacterial system and purified by metal-affinity chromatography. Unaltered binding affinity to the original antigen was demonstrated by ELISA and maintained binding specificity was proved by Western blotting and immunohistochemistry. Since monoclonal antibodies against prion protein can antagonize prion propagation, humanized scFv specific for the pathogenic form of the prion protein might become a potential therapeutic reagent
Chlamydial Pre-Infection Protects From Subsequent Herpes Simplex Virus-2 Challenge in a Murine Vaginal Super-Infection Model
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singlyinfected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans
Argelia. Mapas generales (1881). 1:1600000
Precede al tÃtulo: "Publié sous les Auspices de la Société de Géographie d'Alger"Escalas gráficas de 100 kilómetros [= 6,3 cm] y 62 millas inglesas [= 6,3 cm]. Coordenadas referidas al meridiano de ParÃs (O 7°30'-E 1°10'/N 37°30'-N 28°40'). Red geográfica de 1° en 1°Relieve representado por normalesTabla de signos convencionales para indicar lÃneas ferroviariasNota explicativa sobre la composición del mapa y sobre altitudes de algunos puntosProcede de la "Colección Coello
Equivalent performance with half the clinker content using
Abstract In response to growing pressures to reduce the clinker content in cement, the Canadian Standards Association (CSA A3001-08) introduced a new classification of cement in 2008, this being Portland Limestone Cement (PLC) containing up to 15% limestone. This paper presents data from laboratory and field studies on the properties of concrete produced with portland limestone cement (PLC) and moderate to high levels of supplementary cementing materials (SCM). The test data indicate that PLC with up to 15% limestone can be manufactured to produce equivalent performance to a portland cement (PC) in terms of concrete strength and other properties, including durability. The equivalent performance is achieved by optimizing the PLC with regards to composition and particle-size distribution, and requires intergrinding rather than blending of the portland cement and limestone. The performance of concrete produced with PLC in combination with a wide range of SCM is also equivalent to that of concrete produced with PC and the same SCM. Full-scale field trials have been conducted with concretes with blends of PLC and SCM and these concretes provide similar or improved performance compared to PC concrete; in one case the clinker content represented less than 50% of the total cementitious material. A clinker reduction of 50% represents a very significant reduction in the carbon footprint associated with the production of portland cement clinker
A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins
GFP and the red fluorescent protein, DsRed, have been combined to design a protease assay that allows not only for fluorescence resonance energy transfer (FRET) studies but also for dual-color crosscorrelation analysis, a single-molecule-based method that selectively probes the concomitant movement of two distinct tags. The measurement principle is based on a spectrally resolved detection of single molecules diffusing in and out of a diffraction-limited laser focus. Double-labeled substrate molecules are separated into two single-labeled products by specific cleavage at a protease cleavage site between the two flanking tags, DsRed and GFP, thus disrupting joint fluctuations in the two detection channels and terminating FRET between the two labels. In contrast to enzyme assays based solely on FRET, this method of dual-color crosscorrelation is not limited to a certain range of distances between the fluorophores and is much more versatile with respect to possible substrate design. To simplify the measurement setup, two-photon excitation was used, allowing for simultaneous excitation of both tags with a single infrared laser wavelength. The general concept was experimentally verified with a GFP–peptide–DsRed construct containing the cleavage site for tobacco etch virus protease. Two-photon excitation in the infrared and the use of cloneable tags make this assay easily adaptable to intracellular applications. Moreover, the combination of FRET and crosscorrelation analysis in a single-molecule-based approach promises exciting perspectives for miniaturized high-throughput screening based on fluorescence spectroscopy
CX3CR1 Is Expressed in Differentiated Human Ciliated Airway Cells and Co-Localizes with Respiratory Syncytial Virus on Cilia in a G Protein-Dependent Manner
<div><p>Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a significant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin, thereby triggering fusion of the viral and cellular membranes. However, a host protein ligand for G has not yet been identified. Here we show that CX3CR1 is expressed in the motile cilia of differentiated human airway epithelial (HAE) cells, and that CX3CR1 co-localizes with RSV particles. Upon infection, the distribution of CX3CR1 in these cells is significantly altered. Complete or partial deletion of RSV G results in viruses binding at least 72-fold less efficiently to cells, and reduces virus replication. Moreover, an antibody targeting an epitope near the G protein’s CX3CR1-binding motif significantly inhibits binding of the virus to airway cells. Given previously published evidence of the interaction of G with CX3CR1 in human lymphocytes, these findings suggest a role for G in the interaction of RSV with ciliated lung cells. This interpretation is consistent with past studies showing a protective benefit in immunizing against G in animal models of RSV infection, and would support targeting the CX3CR1-G protein interaction for prophylaxis or therapy. CX3CR1 expression in lung epithelial cells may also have implications for other respiratory diseases such as asthma.</p></div
- …