133 research outputs found

    Synthesis, analysis and biological evaluation of novel indolquinonecryptolepine analogues as potential anti-tumour agents.

    Get PDF
    A small library of cryptolepine analogues were synthesised incorporating halogens and/or nitrogen containing side chains to optimise their interaction with the sugar-phosphate backbone of DNA to give improved binding, interfering with topoisomerase II hence enhancing cytotoxicity. Cell viability, DNA binding and Topoisomerase II inhibition is discussed for these compounds. Fluorescence microscopy was used to investigate the uptake of the synthesised cryptolepines into the nucleus. We report the synthesis and anti-cancer biological evaluation of nine novel cryptolepine analogues, which have greater cytotoxicity than the parent compound and are important lead compounds in the development of novel potent and selective indoloquinone anti-neoplastic agents

    Design of a Bovine Low-Density SNP Array Optimized for Imputation

    Get PDF
    The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle

    The Hierarchical Age-Period-Cohort model: Why does it find the results that it finds?

    Get PDF
    It is claimed the hierarchical-age–period–cohort (HAPC) model solves the age–period–cohort (APC) identification problem. However, this is debateable; simulations show situations where the model produces incorrect results, countered by proponents of the model arguing those simulations are not relevant to real-life scenarios. This paper moves beyond questioning whether the HAPC model works, to why it produces the results it does. We argue HAPC estimates are the result not of the distinctive substantive APC processes occurring in the dataset, but are primarily an artefact of the data structure—that is, the way the data has been collected. Were the data collected differently, the results produced would be different. This is illustrated both with simulations and real data, the latter by taking a variety of samples from the National Health Interview Survey (NHIS) data used by Reither et al. (Soc Sci Med 69(10):1439–1448, 2009) in their HAPC study of obesity. When a sample based on a small range of cohorts is taken, such that the period range is much greater than the cohort range, the results produced are very different to those produced when cohort groups span a much wider range than periods, as is structurally the case with repeated cross-sectional data. The paper also addresses the latest defence of the HAPC model by its proponents (Reither et al. in Soc Sci Med 145:125–128, 2015a). The results lend further support to the view that the HAPC model is not able to accurately discern APC effects, and should be used with caution when there appear to be period or cohort near-linear trends

    Propagating Quantum Microwaves: Towards Applications in Communication and Sensing

    Full text link
    The field of propagating quantum microwaves has started to receive considerable attention in the past few years. Motivated at first by the lack of an efficient microwave-to-optical platform that could solve the issue of secure communication between remote superconducting chips, current efforts are starting to reach other areas, from quantum communications to sensing. Here, we attempt at giving a state-of-the-art view of the two, pointing at some of the technical and theoretical challenges we need to address, and while providing some novel ideas and directions for future research. Hence, the goal of this paper is to provide a bigger picture, and -- we hope -- to inspire new ideas in quantum communications and sensing: from open-air microwave quantum key distribution to direct detection of dark matter, we expect that the recent efforts and results in quantum microwaves will soon attract a wider audience, not only in the academic community, but also in an industrial environment

    Electoral Volatility, Political Sophistication, Trust and Efficacy

    Get PDF
    In this article we investigate voter volatility and analyze the causes and motives of switching vote intentions. We test two main sets of variables linked to volatility in literature; political sophistication and ‘political (dis)satisfaction’. Results show that voters with low levels of political efficacy tend to switch more often, both within a campaign and between elections. In the analysis we differentiate between campaign volatility and inter-election volatility and by doing so show that the dynamics of a campaign have a profound impact on volatility. The campaign period is when the lowly sophisticated switch their vote intention. Those with higher levels of interest in politics have switched their intention before the campaign has started. The data for this analysis are from the three wave PartiRep Belgian Election Study (2009)

    Botany, chemistry, and pharmaceutical significance of Sida cordifolia: a traditional medicinal plant

    Get PDF
    Sida cordifolia Linn. belonging to the family, Malvaceae has been widely employed in traditional medications in many parts of the world including India, Brazil, and other Asian and African countries. The plant is extensively used in the Ayurvedic medicine preparation. There are more than 200 plant species within the genus Sida, which are distributed predominantly in the tropical regions. The correct taxonomic identification is a major concern due to the fact that S. cordifolia looks morphologically similar with its related species. It possesses activity against various human ailments, including cancer, asthma, cough, diarrhea, malaria, gonorrhea, tuberculosis, obesity, ulcer, Parkinson’s disease, urinary infections, and many others. The medical importance of this plant is mainly correlated to the occurrence of diverse biologically active phytochemical compounds such as alkaloids, flavonoids, and steroids. The major compounds include β-phenylamines, 2-carboxylated tryptamines, quinazoline, quinoline, indole, ephedrine, vasicinone, 5-3-isoprenyl flavone, 5,7-dihydroxy-3-isoprenyl flavone, and 6-(isoprenyl)- 3-methoxy- 8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucosyl[1–4]-α-D-glucoside. The literature survey reveals that most of the pharmacological investigations on S. cordifolia are limited to crude plant extracts and few isolated pure compounds. Therefore, there is a need to evaluate many other unexplored bioactive phytoconstituents with evidences so as to justify the traditional usages of S. cordifolia. Furthermore, detailed studies on the action of mechanisms of these isolated compounds supported by clinical research are necessary for validating their application in contemporary medicines. The aim of the present chapter is to provide a detailed information on the ethnobotanical, phytochemical, and pharmacological aspects of S. cordifolia
    corecore