556 research outputs found
Patient-Specific Prosthetic Fingers by Remote Collaboration - A Case Study
The concealment of amputation through prosthesis usage can shield an amputee
from social stigma and help improve the emotional healing process especially at
the early stages of hand or finger loss. However, the traditional techniques in
prosthesis fabrication defy this as the patients need numerous visits to the
clinics for measurements, fitting and follow-ups. This paper presents a method
for constructing a prosthetic finger through online collaboration with the
designer. The main input from the amputee comes from the Computer Tomography
(CT) data in the region of the affected and the non-affected fingers. These
data are sent over the internet and the prosthesis is constructed using
visualization, computer-aided design and manufacturing tools. The finished
product is then shipped to the patient. A case study with a single patient
having an amputated ring finger at the proximal interphalangeal joint shows
that the proposed method has a potential to address the patient's psychosocial
concerns and minimize the exposure of the finger loss to the public.Comment: Open Access articl
From Default Mode Network to the Basal Configuration: Sex Differences in the Resting-State Brain Connectivity as a Function of Age and Their Clinical Correlates
Connectomics is a framework that models brain structure and function interconnectivity as a network, rather than narrowly focusing on select regions-of-interest. MRI-derived connectomes can be structural, usually based on diffusion-weighted MR imaging, or functional, usually formed by examining fMRI blood-oxygen-level-dependent (BOLD) signal correlations. Recently, we developed a novel method for assessing the hierarchical modularity of functional brain networks—the probability associated community estimation (PACE). PACE uniquely permits a dual formulation, thus yielding equivalent connectome modular structure regardless of whether positive or negative edges are considered. This method was rigorously validated using the 1,000 functional connectomes project data set (F1000, RRID:SCR_005361) (1) and the Human Connectome Project (HCP, RRID:SCR_006942) (2, 3) and we reported novel sex differences in resting-state connectivity not previously reported. (4) This study further examines sex differences in regard to hierarchical modularity as a function of age and clinical correlates, with findings supporting a basal configuration framework as a more nuanced and dynamic way of conceptualizing the resting-state connectome that is modulated by both age and sex. Our results showed that differences in connectivity between men and women in the 22–25 age range were not significantly different. However, these same non-significant differences attained significance in both the 26–30 age group (p = 0.003) and the 31–35 age group (p < 0.001). At the most global level, areas of diverging sex difference include parts of the prefrontal cortex and the temporal lobe, amygdala, hippocampus, inferior parietal lobule, posterior cingulate, and precuneus. Further, we identified statistically different self-reported summary scores of inattention, hyperactivity, and anxiety problems between men and women. These self-reports additionally divergently interact with age and the basal configuration between sexes
Asymmetric Image-Template Registration
Authors Manuscript received: 2010 May 4. 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part IA natural requirement in pairwise image registration is that the resulting deformation is independent of the order of the images. This constraint is typically achieved via a symmetric cost function and has been shown to reduce the effects of local optima. Consequently, symmetric registration has been successfully applied to pairwise image registration as well as the spatial alignment of individual images with a template. However, recent work has shown that the relationship between an image and a template is fundamentally asymmetric. In this paper, we develop a method that reconciles the practical advantages of symmetric registration with the asymmetric nature of image-template registration by adding a simple correction factor to the symmetric cost function. We instantiate our model within a log-domain diffeomorphic registration framework. Our experiments show exploiting the asymmetry in image-template registration improves alignment in the image coordinates.NAMIC (NIH NIBIB NAMIC U54-EB005149)NAC (NIH NCRR NAC P41- RR13218)mBIRN (NIH NCRR mBIRN U24-RR021382)NIH NINDS (R01-NS051826 Grant)National Science Foundation (U.S.) (CAREER Grant 0642971)NIBIB (R01 EB001550)NIBIB (R01EB006758)NCRR (R01 RR16594-01A1)NCRR (P41-RR14075)NINDS (R01 NS052585-01)Singapore. Agency for Science, Technology and Researc
Clinical psychologists’ use of reflection and reflective practice within clinical work
Previous research regarding reflective practice has considered the training and development of reflective skills; little attention has been paid to how these are used by clinicians in practice. This study aims to understand how clinical psychologists experience reflection and reflective practice in their day-to-day clinical role. Six practicing clinical psychologists in Singapore were interviewed regarding their experiences. The interviews were analysed using Interpretative Phenomenological Analysis. Participants experienced reflection and reflective practice in many ways. Reflection helped the participants understand themselves better and how they personally impacted their work. Reflection helped in understanding and engaging with clients; it was particularly important for the development of the therapeutic relationship, and when cases felt ‘stuck’. Finally, reflection helped participants understand their professional role as clinicians, and maintain professional and ethical standards. Whilst participants valued reflection and could describe the mechanisms they used to reflect, they struggled to define reflective practice and their own process of reflection. In conclusion, participants were able to describe how using reflection and reflective practice within their clinical work benefited them and their clients. Further investigation into this area is required, particularly focusing on the challenging issue of developing a clearer definition of reflective practice
Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer
INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma
Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering
While technologies for multiplexed imaging have provided an unprecedented understanding of tissue composition in health and disease, interpreting this data remains a significant computational challenge. To understand the spatial organization of tissue and how it relates to disease processes, imaging studies typically focus on cell-level phenotypes. However, images can capture biologically important objects that are outside of cells, such as the extracellular matrix. Here, we describe a pipeline, Pixie, that achieves robust and quantitative annotation of pixel-level features using unsupervised clustering and show its application across a variety of biological contexts and multiplexed imaging platforms. Furthermore, current cell phenotyping strategies that rely on unsupervised clustering can be labor intensive and require large amounts of manual cluster adjustments. We demonstrate how pixel clusters that lie within cells can be used to improve cell annotations. We comprehensively evaluate pre-processing steps and parameter choices to optimize clustering performance and quantify the reproducibility of our method. Importantly, Pixie is open source and easily customizable through a user-friendly interface
Game theory framework for MAC parameter optimization in energy-delay constrained sensor networks
Optimizing energy consumption and end-to-end (e2e) packet delay in energy-constrained, delay-sensitive wireless sensor networks is a conflicting multiobjective optimization problem. We investigate the problem from a game theory perspective, where the two optimization objectives are considered as game players. The cost model of each player is mapped through a generalized optimization framework onto protocol-specific MAC parameters. From the optimization framework, a game is first defined by the Nash bargaining solution (NBS) to assure energy consumption and e2e delay balancing. Secondy, the Kalai-Smorodinsky bargaining solution (KSBS) is used to find an equal proportion of gain between players. Both methods offer a bargaining solution to the duty-cycle MAC protocol under different axioms. As a result, given the two performance requirements (i.e., the maximum latency tolerated by the application and the initial energy budget of nodes), the proposed framework allows to set tunable system parameters to reach a fair equilibrium point that dually minimizes the system latency and energy consumption. For illustration, this formulation is applied to six state-of-the-art wireless sensor network (WSN) MAC protocols: B-MAC, X-MAC, RI-MAC, SMAC, DMAC, and LMAC. The article shows the effectiveness and scalability of such a framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements
Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS)
Rationale: Vitamin D deficiency has been implicated as a pathogenic factor in sepsis and intensive therapy unit mortality but has not been assessed as a risk factor for acute respiratory distress syndrome (ARDS). Causality of these associations has never been demonstrated. Objectives: To determine if ARDS is associated with vitamin D deficiency in a clinical setting and to determine if vitamin D deficiency in experimental models of ARDS influences its severity. Methods: Human, murine and in vitro primary alveolar epithelial cell work were included in this study. Findings: Vitamin D deficiency (plasma 25(OH)D levels 600 genes. In a clinical setting, pharmacological repletion of vitamin D prior to oesophagectomy reduced the observed changes of in vivo measurements of alveolar capillary damage seen in deficient patients. Conclusions: Vitamin D deficiency is common in people who develop ARDS. This deficiency of vitamin D appears to contribute to the development of the condition, and approaches to correct vitamin D deficiency in patients at risk of ARDS should be developed
- …