1,291 research outputs found

    Réduction et contrôle du foisonnement filamenteux des boues activées par application d'un régime turbulent

    Get PDF
    Le foisonnement filamenteux des boues activées est un problème important dans les stations d'épuration du type Boues Activées, car il peut entraîner des pertes de biomasse avec l'eau épurée. Les techniques de lutte utilisées actuellement sont, soit des techniques dites « biologiques » (sélecteurs), soit des techniques chimiques (floculants, biocides). L'objectif de notre travail a été la mise au point d'un procédé original basé sur la création d'une zone de turbulence pour casser les réseaux filamenteux. La réduction et le contrôle du bulking sont obtenus par passage (de durée limitée T1) de la biomasse dans un système venturi, équipée d'une prise d'air. L'efficacité du procédé dépend principalement de la turbulence due à l'auto-aspiration d'air au niveau du rétrécissement du venturi. Cette turbulence contribue d'une part au mécanisme de « cisaillement » des filaments, et d'autre part à la qualité de l'effluent sortant. Une gestion adaptée (aération séquentielle en procédé à faible charge) permet d'obtenir, outre une amélioration de la décantation, une amélioration de l'élimination de l'azote. De plus, le contrôle de la biomasse optimise l'élimination de la pollution carbonée.The loss of biomass in a waste water plant as a result of sludge bulking is an important problem. Biological (ex.: selector configuration) or chemical (ex. : floculating reagents, biocides...) methods habe been used in order to control bulking. A new process based on the generation of turbulence to break the filaments is described. To reduce and control sludge bulking, the biomass is pumped through a venturi equipped with an air inlet. Figure 1 represents the pilot scheme. Two processes can be used : the emulsor with air is introduced on recycling of sludge or is placed in an independent loop. Here, it is the latter that has been used.We tried to reduce bulking by mechanical treatment. The hydrodynamic efficiency of the process depends mostly on the degree of turbulence generated by the waters speed and by the suction of air in the constricted part of the venturi.During the first trials on the plant, we defined the maximum turbulence allowed in order not to break the floc. We could not use a big aeration to prevent defloculation.The main factors to reduce bulking are :- the sequences of usage of the emulsor venturi (the periodicity of the treatment is T),- the speed of the water in the nozzle of the venturi (we can refer to the Reynolds Number Re = Ud/ʋ; but this number can’t really represent the turbulence created),- the duration of the emulsor's application. The emulsor venturi is used during a period T1 with a periodicity T (T>T1), with T1 : n X (VR/qv) where VR/qv is the contact time in the venturi and n is the frequence of recycling.During the period T, it is possible to use continuous aeration or to work with sequential aeration.a) continuous aeration|_________________________| TTime between two applications of the venturi|_______________| T1Venturi durationThe process is the same as the aeration of activated sludge. COD is reduced but only with low load, significant nitrification occurs. Figure 5 shows the efficiency of the continuous aeration process especially versus the sludge index parameter.b) sequential aerationAs we try to remove nitrogen, the sequential aeration is more useful than continuous aeration. A cycle is divided in two periods (T2, T3 with T = T2 + T3), and of course, the duration of the venturi use equal to T1.|_________________________| TTime between two applications of the venturi|_____________| T1Venturi duration|_________________| T2Aeration duration          |_____| T3Anoxic periodFigures 6 and 7 show the efficiency of the emulsor if we consider lB (sludge index) as the main parameter for the sequential operation (T2, T3) and it's also possible to obtain a good removal of nitrogen pollution.Our operations parameters were for these experiments :T = 8 or 12 hoursT1 between 20 min. and 1 hourT2 between 4 and 5 hoursThis process is now patiented and the first industrial applications are now defined

    Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La1.6x_{1.6-x}Nd0.4_{0.4}Srx_{x}CuO4_4

    Get PDF
    The electrical resistivity ρ\rho and Hall coefficient RH_H of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to H=37.5H = 37.5 T, large enough to access the normal state at T0T \to 0, for closely spaced dopings pp across the pseudogap critical point at p=0.235p^\star = 0.235. Below pp^\star, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing pp. Taken together, these upturns show that the normal-state carrier density nn at T=0T = 0 drops upon entering the pseudogap phase. Quantitatively, it goes from n=1+pn = 1 + p at p=0.24p = 0.24 to n=pn = p at p=0.20p = 0.20. By contrast, the mobility does not change appreciably, as revealed by the magneto-resistance. The transition has a width in doping and some internal structure, whereby RH_H responds more slowly than ρ\rho to the opening of the pseudogap. We attribute this difference to a Fermi surface that supports both hole-like and electron-like carriers in the interval 0.2<p<p0.2 < p < p^\star, with compensating contributions to RH_H. Our data are in excellent agreement with recent high-field data on YBCO and LSCO. The quantitative consistency across three different cuprates shows that a drop in carrier density from 1+p1 + p to pp is a universal signature of the pseudogap transition at T=0T=0. We discuss the implication of these findings for the nature of the pseudogap phase.Comment: 11 pages, 12 figure

    Pseudogap phase of cuprate superconductors confined by Fermi surface topology

    Full text link
    The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping pp^* that is material-dependent. What determines pp^* is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping pFSp_{FS} at which the large Fermi surface goes from hole-like to electron-like, so that pp^* \leq pFSp_{FS}. We derive this result from high-magnetic-field transport measurements in La1.6x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 under pressure, which reveal a large and unexpected shift of pp^* with pressure, driven by a corresponding shift in pFSp_{FS}. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that pp^* can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap.Comment: 15 pages, 5 figures, 7 supplemental figure

    Groupwise Multimodal Image Registration using Joint Total Variation

    Get PDF
    In medical imaging it is common practice to acquire a wide range of modalities (MRI, CT, PET, etc.), to highlight different structures or pathologies. As patient movement between scans or scanning session is unavoidable, registration is often an essential step before any subsequent image analysis. In this paper, we introduce a cost function based on joint total variation for such multimodal image registration. This cost function has the advantage of enabling principled, groupwise alignment of multiple images, whilst being insensitive to strong intensity non-uniformities. We evaluate our algorithm on rigidly aligning both simulated and real 3D brain scans. This validation shows robustness to strong intensity non-uniformities and low registration errors for CT/PET to MRI alignment. Our implementation is publicly available at https://github.com/brudfors/coregistration-njtv

    Multivoxel Pattern Analysis Reveals Auditory Motion Information in MT+ of Both Congenitally Blind and Sighted Individuals

    Get PDF
    Cross-modal plasticity refers to the recruitment of cortical regions involved in the processing of one modality (e.g. vision) for processing other modalities (e.g. audition). The principles determining how and where cross-modal plasticity occurs remain poorly understood. Here, we investigate these principles by testing responses to auditory motion in visual motion area MT+ of congenitally blind and sighted individuals. Replicating previous reports, we find that MT+ as a whole shows a strong and selective responses to auditory motion in congenitally blind but not sighted individuals, suggesting that the emergence of this univariate response depends on experience. Importantly, however, multivoxel pattern analyses showed that MT+ contained information about different auditory motion conditions in both blind and sighted individuals. These results were specific to MT+ and not found in early visual cortex. Basic sensitivity to auditory motion in MT+ is thus experience-independent, which may be a basis for the region's strong cross-modal recruitment in congenital blindness

    Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2

    Get PDF
    Unidirectional fluid flow plays an essential role in the breaking of left-right (L-R) symmetry in mouse embryos, but it has remained unclear how the flow is sensed by the embryo. We report that the Ca2+ channel Polycystin-2 (Pkd2) is required specifically in the perinodal crown cells for sensing the nodal flow. Examination of mutant forms of Pkd2 shows that the ciliary localization of Pkd2 is essential for correct L-R patterning. Whereas Kif3a mutant embryos, which lack all cilia, failed to respond to an artificial flow, restoration of primary cilia in crown cells rescued the response to the flow. Our results thus suggest that nodal flow is sensed in a manner dependent on Pkd2 by the cilia of crown cells located at the edge of the node.CREST of the Japan Science and Technology Corporation; NIH [P30 DK090744]; Human Frontier Science Program [ST00246/2003C]; Deutsche Forschungsgemeinschaft [PE 853/2]; Japan Society for the Promotion of Science; American Heart Association [R10682]info:eu-repo/semantics/publishedVersio

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes
    corecore