738 research outputs found
Multiobjective gas turbine engine controller design using genetic algorithms
This paper describes the use of multiobjective genetic algorithms (MOGAs) in the design of a multivariable control system for a gas turbine engine. The mechanisms employed to facilitate multiobjective search with the genetic algorithm are described with the aid of an example. It is shown that the MOGA confers a number of advantages over conventional multiobjective optimization methods by evolving a family of Pareto-optimal solutions rather than a single solution estimate. This allows the engineer to examine the trade-offs between the different design objectives and configurations during the course of an optimization. In addition, the paper demonstrates how the genetic algorithm can be used to search in both controller structure and parameter space thereby offering a potentially more general approach to optimization in controller design than traditional numerical methods. While the example in the paper deals with control system design, the approach described can be expected to be applicable to more general problems in the fields of computer aided design (CAD) and computer aided engineering (CAE
Modelling the Antarctic lower stratosphere
Results form modeling studies of the Antarctic lower stratosphere which have attempted to simulate the large springtime ozone losses and corresponding changes in other trace constituents are given. These studies were carried out in a photochemical box model, a one-dimensional model without transport and in a two-dimensional photochemical-dynamical-radiation model. The photochemical studies have investigated inter alia the sensitivity of ozone to inclusion in the model of heterogeneous chemistry, and to the inclusion of the ClO dimer. When both of these are incorporated in the model, ozone depletions resembling whose found in Halley Bay in 1987 (J.C. Farman, Nature, 329, 1987) can be reproduced. The temporal variations (both diurnal and during the August to October period) of a number of important tracers including HCl, ClONO2, OClO and BrO are discussed. The two-dimensional study concentrated on the difficulty of establishing in the model the dynamical preconditioning of the lower polar stratosphere - low temperatures, low N2O, etc., high ClOx. Calculations are presented to show: (1) the depletion of ozone during the springtime season, (2) the effect of large ozone losses on lower latitudes, and (3) the longer term (multi-year) variations of ozone in Antarctica, assuming realistic increases in the atmospheric halogen burden
Optimisation of Quantum Trajectories Driven by Strong-field Waveforms
Quasi-free field-driven electron trajectories are a key element of
strong-field dynamics. Upon recollision with the parent ion, the energy
transferred from the field to the electron may be released as attosecond
duration XUV emission in the process of high harmonic generation (HHG). The
conventional sinusoidal driver fields set limitations on the maximum value of
this energy transfer, and it has been predicted that this limit can be
significantly exceeded by an appropriately ramped-up cycleshape. Here, we
present an experimental realization of such cycle-shaped waveforms and
demonstrate control of the HHG process on the single-atom quantum level via
attosecond steering of the electron trajectories. With our optimized optical
cycles, we boost the field-ionization launching the electron trajectories,
increase the subsequent field-to-electron energy transfer, and reduce the
trajectory duration. We demonstrate, in realistic experimental conditions, two
orders of magnitude enhancement of the generated XUV flux together with an
increased spectral cutoff. This application, which is only one example of what
can be achieved with cycle-shaped high-field light-waves, has farreaching
implications for attosecond spectroscopy and molecular self-probing
The response of a neutral atom to a strong laser field probed by transient absorption near the ionisation threshold
We present transient absorption spectra of an extreme ultraviolet attosecond pulse train in helium dressed by an 800 nm laser field with intensity ranging from W/cm to W/cm. The energy range probed spans 16-42 eV, straddling the first ionisation energy of helium (24.59 eV). By changing the relative polarisation of the dressing field with respect to the attosecond pulse train polarisation we observe a large change in the modulation of the absorption reflecting the vectorial response to the dressing field. With parallel polarized dressing and probing fields, we observe significant modulations with periods of one half and one quarter of the dressing field period. With perpendicularly polarized dressing and probing fields, the modulations of the harmonics above the ionisation threshold are significantly suppressed. A full-dimensionality solution of the single-atom time-dependent Schr odinger equation obtained using the recently developed ab-initio time-dependent B-spline ADC method reproduce some of our observations
Bromine in the tropical troposphere and stratosphere as derived from balloon-borne BrO observations
The first tropospheric and stratospheric (4 to 33 km) BrO profile is presented for the inner tropics derived from balloon-borne DOAS (Differential Optical Absorption Spectroscopy) measurements. In combination with photochemical modelling, total stratospheric inorganic bromine (Br<sub>y</sub>) is deduced to be (21.5&plusmn;2.5) ppt in 4.5-year-old air, probed in 2005. We derive a total contribution of (5.2&plusmn;2.5) ppt from brominated very short-lived substances and inorganic product gases to stratospheric Br<sub>y</sub> Tropospheric BrO was found to be <1 ppt. Our results are compared to two 3-D CTM SLIMCAT model runs, which differ in the lifetime of the bromine source gases, affecting the vertical distribution of Br<sub>y</sub> in the lower stratosphere. Bromine source gas measurements performed 10 days earlier Laube et al., 2008, indicate a lower Br<sub>y</sub> of (17.5&plusmn;0.4) ppt. Potential reasons for this discrepancy are discussed
The increasing threat to stratospheric ozone from dichloromethane.
It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane-an ozone-depleting gas not controlled by the Montreal Protocol-is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer
A refined method for calculating equivalent effective stratospheric chlorine
Chlorine and bromine atoms lead to catalytic depletion of ozone in the stratosphere. Therefore the use and production of ozone-depleting substances (ODSs) containing chlorine and bromine is regulated by the Montreal Protocol to protect the ozone layer. Equivalent effective stratospheric chlorine (EESC) has been adopted as an appropriate metric to describe the combined effects of chlorine and bromine released from halocarbons on stratospheric ozone. Here we revisit the concept of calculating EESC. We derive a refined formulation of EESC based on an advanced concept of ODS propagation into the stratosphere and reactive halogen release. A new transit time distribution is introduced in which the age spectrum for an inert tracer is weighted with the release function for inorganic halogen from the source gases. This distribution is termed the "release time distribution". We show that a much better agreement with inorganic halogen loading from the chemistry transport model TOMCAT is achieved compared with using the current formulation. The refined formulation shows EESC levels in the year 1980 for the mid-latitude lower stratosphere, which are significantly lower than previously calculated. The year 1980 is commonly used as a benchmark to which EESC must return in order to reach significant progress towards halogen and ozone recovery. Assuming that – under otherwise unchanged conditions – the EESC value must return to the same level in order for ozone to fully recover, we show that it will take more than 10 years longer than estimated in this region of the stratosphere with the current method for calculation of EESC. We also present a range of sensitivity studies to investigate the effect of changes and uncertainties in the fractional release factors and in the assumptions on the shape of the release time distributions. We further discuss the value of EESC as a proxy for future evolution of inorganic halogen loading under changing atmospheric dynamics using simulations from the EMAC model. We show that while the expected changes in stratospheric transport lead to significant differences between EESC and modelled inorganic halogen loading at constant mean age, EESC is a reasonable proxy for modelled inorganic halogen on a constant pressure level
Decreasing seasonal cycle amplitude of methane in the northern high latitudes being driven by lower-latitude changes in emissions and transport
Atmospheric methane (CH4) concentrations are rising, which are expected to lead to a corresponding increase in the global seasonal cycle amplitude (SCA) – the difference between its seasonal maximum and minimum values. The reaction between CH4 and its main sink, OH, is dependent on the amount of CH4 and OH in the atmosphere. The concentration of OH varies seasonally, and due to the increasing burden of CH4 in the atmosphere, it is expected that the SCA of CH4 will increase due to the increased removal of CH4 through a reaction with OH in the atmosphere. Spatially varying changes in the SCA could indicate long-term persistent variations in the seasonal sources and sinks, but such SCA changes have not been investigated. Here we use surface flask measurements and a 3D chemical transport model (TOMCAT) to diagnose changes in the SCA of atmospheric CH4 between 1995–2020 and attribute the changes regionally to contributions from different sectors. We find that the observed SCA decreased by 4 ppb (7.6 %) in the northern high latitudes (NHLs; 60–90∘ N), while the SCA increased globally by 2.5 ppb (6.5 %) during this time period. TOMCAT reproduces the change in the SCA at observation sites across the globe. Therefore, we use it to attribute regions which are contributing to the changes in the NHL SCA, which shows an unexpected change in the SCA that differs from the rest of the world. We find that well-mixed background CH4, likely from emissions originating in, and transported from, more southerly latitudes has the largest impact on the decreasing SCA in the NHLs (56.5 % of total contribution to NHLs). In addition to the background CH4, recent emissions from Canada, the Middle East, and Europe contribute 16.9 %, 12.1 %, and 8.4 %, respectively, to the total change in the SCA in the NHLs. The remaining contributions are due to changes in emissions and transport from other regions. The three largest regional contributions are driven by increases in summer emissions from the Boreal Plains in Canada, decreases in winter emissions across Europe, and a combination of increases in summer emissions and decreases in winter emissions over the Arabian Peninsula and Caspian Sea in the Middle East. These results highlight that changes in the observed seasonal cycle can be an indicator of changing emission regimes in local and non-local regions, particularly in the NHL, where the change is counterintuitive.</p
- …