4,655 research outputs found

    Evolutionary coordination system for fixed-wing communications unmanned aerial vehicles

    Get PDF
    A system to coordinate the movement of a group of un- manned aerial vehicles that provide a network backbone over mobile ground-based vehicles with communication needs is presented. Using evo- lutionary algorithms, the system evolves flying manoeuvres that position the aerial vehicles by fulfilling two key requirements; i) they maximise net coverage and ii) they minimise the power consumption. Experimental results show that the proposed coordination system is able to offer a de- sirable level of adaptability with respect to the objectives set, providing useful feedback for future research directions

    Fluctuations of fitness distributions and the rate of Muller's ratchet

    Get PDF
    The accumulation of deleterious mutations is driven by rare fluctuations which lead to the loss of all mutation free individuals, a process known as Muller's ratchet. Even though Muller's ratchet is a paradigmatic process in population genetics, a quantitative understanding of its rate is still lacking. The difficulty lies in the nontrivial nature of fluctuations in the fitness distribution which control the rate of extinction of the fittest genotype. We address this problem using the simple but classic model of mutation selection balance with deleterious mutations all having the same effect on fitness. We show analytically how fluctuations among the fittest individuals propagate to individuals of lower fitness and have a dramatically amplified effects on the bulk of the population at a later time. If a reduction in the size of the fittest class reduces the mean fitness only after a delay, selection opposing this reduction is also delayed. This delayed restoring force speeds up Muller's ratchet. We show how the delayed response can be accounted for using a path integral formulation of the stochastic dynamics and provide an expression for the rate of the ratchet that is accurate across a broad range of parameters.Comment: Genetics 201

    Neuropsychological evaluation of blast-related concussion: Illustrating the challenges and complexities through OEF/OIF case studies

    Get PDF
    Background/objective: Soldiers of Operations Enduring Freedom (OEF) and Iraqi Freedom (OIF) sustain blast-related mild traumatic brain injury (concussion) with alarming regularity. This study discusses factors in addition to concussion, such as co-morbid psychological difficulty (e.g. post-traumatic stress) and symptom validity concerns that may complicate neuropsychological evaluation in the late stage of concussive injury. Case report: The study presents the complexities that accompany neuropsychological evaluation of blast concussion through discussion of three case reports of OEF/OIF personnel. Discussion: The authors emphasize uniform assessment of blast concussion, the importance of determining concussion severity according to acute-injury characteristics and elaborate upon non-concussion-related factors that may impact course of cognitive limitation. The authors conclude with a discussion of the need for future research examining the impact of blast concussion (particularly recurrent concussion) and neuropsychological performance

    Evaluation Context Impacts Neuropsychological Performance of OEF/OIF Veterans with Reported Combat-Related Concussion

    Get PDF
    Although soldiers of Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF) encounter combat-related concussion at an unprecedented rate, relatively few studies have examined how evaluation context, insufficient effort, and concussion history impact neuropsychological performances in the years following injury. The current study explores these issues in a sample of 119 U.S. veterans (OEF/OIF forensic concussion, n = 24; non-OEF/OIF forensic concussion, n = 20; OEF/OIF research concussion, n = 38; OEF/OIF research without concussion, n = 37). The OEF/OIF forensic concussion group exhibited significantly higher rates of insufficient effort relative to the OEF/OIF research concussion group, but a comparable rate of insufficient effort relative to the non-OEF/OIF forensic concussion group. After controlling for effort, the research concussion and the research non-concussion groups demonstrated comparable neuropsychological performance. Results highlight the importance of effort assessment among OEF/OIF and other veterans with concussion history, particularly in forensic contexts

    Analytic approach to the evolutionary effects of genetic exchange

    Full text link
    We present an approximate analytic study of our previously introduced model of evolution including the effects of genetic exchange. This model is motivated by the process of bacterial transformation. We solve for the velocity, the rate of increase of fitness, as a function of the fixed population size, NN. We find the velocity increases with lnN\ln N, eventually saturated at an NN which depends on the strength of the recombination process. The analytical treatment is seen to agree well with direct numerical simulations of our model equations

    Neuropsychological Outcomes of U.S. Veterans with Report of Remote Blast-Related Concussion and Current Psychopathology

    Get PDF
    This study explored whether remote blast-related MTBI and/or current Axis I psychopathology contribute to neuropsychological outcomes among OEF/OIF veterans with varied combat histories. OEF/OIF veterans underwent structured interviews to evaluate history of blast-related MTBI and psychopathology and were assigned to MTBI (n = 18), Axis I (n = 24), Co-morbid MTBI/Axis I (n = 34), or post-deployment control (n = 28) groups. A main effect for Axis I diagnosis on overall neuropsychological performance was identified (F(3,100) = 4.81; p = .004), with large effect sizes noted for the Axis I only (d = .98) and Co-morbid MTBI/Axis I (d = .95) groups relative to the control group. The latter groups demonstrated primary limitations on measures of learning/memory and processing speed. The MTBI only group demonstrated performances that were not significantly different from the remaining three groups. These findings suggest that a remote history of blast-related MTBI does not contribute to objective cognitive impairment in the late stage of injury. Impairments, when present, are subtle and most likely attributable to PTSD and other psychological conditions. Implications for clinical neuropsychologists and future research are discussed. (JINS, 2012, 18, 1–11

    The role of mutation rate variation and genetic diversity in the architecture of human disease

    Get PDF
    Background We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified. Results Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless. Conclusions Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease

    Recombination dramatically speeds up evolution of finite populations

    Full text link
    We study the role of recombination, as practiced by genetically-competent bacteria, in speeding up Darwinian evolution. This is done by adding a new process to a previously-studied Markov model of evolution on a smooth fitness landscape; this new process allows alleles to be exchanged with those in the surrounding medium. Our results, both numerical and analytic, indicate that for a wide range of intermediate population sizes, recombination dramatically speeds up the evolutionary advance
    corecore